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NATTONAL ADVISCRY COMMITTEE FOR AFRONAUTICS

TECHNICAL NOTE 3133

THE FREE-STREAM BOUNDARIES COF TURBULENT FLOWS

By Stanley Corrsin and Alan L. Kistler

SUMMARY

An experimental and theoretical study has been made of the instan-
taneously sharp and irregular front which is always found to separate
turbulent fluid from contiguous "nonturbulent" fluid at a free-stream
boundary. This distinct demarcation is known to give an intermittent
character to hot-wire signals in the boundary zone.

The over-all behavior of the front is described statistically in
terms of its wrinkle-amplitude growth and its lateral propagetion rela-
tive to the fluid as functions of downstream coordinate.

It is proposed and justified that the front actually consists of
a very thin fluid layer in which direct viscous forces play the central
role of transmitting mean and fluctuating vorticity to previously non-
turbulent fluid. Outside this "ldaminar superlayer" there is presumsbly
a field of irrotational velocity fluctuations (the "nonturbulent" flow)
with constant mean velocity. As outlined in the following paragraphs,
theoretical analysis based on this general physical picture gives results
on front behavior which are in plausible agreement with experimental
results for three turbulent shear flows: rough-wall boundary layer,
plane wake, and round jet.

It is shown that the rate of increase of wrinkle amplitude of the
front can be roughly explained as a lLagrangian diffusion process, using
the statistical properties of the turbulence in the fully turbulent zone.

The transversal propagation velocity of the turbulence front is pre-
dicted by the behavior of a physicomathematical model of the laminar
superlayer. The model is a generalized Stokes-Rayleigh infinite wall,
oscillating in its own plane, translating to give constant mean vorticity
at the boundary, plus local vorticity production and uniform suction
velocity.

Finally, various statistical properties of the turbulence front
location as a stationary random variable (for fixed downstream position)
have been either directly measured or indirectly inferred from Known
theorems on Gaussian stochastic processes; it is found that for boundary
layer, wake, and jet the front location is very nearly Gsussian. Spe-
cifically, it is possible therefore to estimate the autocorrelation func-
tion of the front position.
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INTRODUCTION

Until the last few years, basic experimental and (especially) theo-
retical attacks upon the problems of turbulent flow have centered on
fully turbulent fields, both isotropic and shearing. The experimental
researches have been concerned with the measurement of significant sta-
tistical quantities with the hope that these will give some insight into
the mechanism of fully developed turbulence and might even suggest a
profitable theoretical approach.

In reality, however, every turbulent flow is bounded by fluid not
in a turbulent state. If the boundary spacings can be made very large
compared with the characteristic correlation lengths of the turbulence,
for example, integral scale and dissipative scale ("microscale"), then
an "infinite field" approximation can be used. This has been possible
in research on the decaying turbulence behind regular grids, a reasonably
good likeness of Taylor's ideal concept of isotropic turbulence (ref. 1).

It now seems probable that the classic turbulent shear flows, bound-
ary layer, wake, jet, channel, and so forth, have transversal integral .
scales not very small compared with their characteristic widths. This
has been shown experimentally for the round jet (ref. 2), the plane "half
jet" (ref. 3), the boundary layer (ref. 4), and the channel (ref. 5).
This ijmplies that the general behavior of these shear flows cannot be
fully inferred on a (still unsolved) homogeneous shear flow basis but
must involve the boundary phenomena.

Turbulent shear flow boundaries can be classified in various ways.
The conventional possibility is the division into (a) "solid" and
(b) "free" (or "free stream") boundaries, depending upon the presence
or absence of a so0lid wall and excluding possible symmetry planes from
consideration as boundaries.

A further subdivision can be made in each class according to whether
the outside flow or wall is traveling faster or slower than the turbulent
fluid just inside the boundary, but this distinction is probably only a
quantitative one (because of the nonlinearity of the system), not
affecting the nature of the boundary phenomena; a comparison of wake and
Jet boundaries would illustrate this remark. One can also visualize a
boundary state in which this mean velocity difference is zero, that is,
the case of uniform velocity field including both turbulent and outside
flow.

This investigation is concerned solely with the free boundary con-
dition. In practice this case generally involves a mean shear stress in
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the fully turbulent region, reducing to zero monctonically toward the
nonturbulent! free-stream flow.

The outstanding observable characteristic of free boundaries is the
relatively sharp instantaneous demarcation surface between turbulent and
nonturbulent fluid. This shows up very clearly, for example, in short-
duration shadowgraphs of the turbulent wakes behind high-speed projec-
tiles (fig. 1). The sharpness of the irregular boundary illustrated
persists as far downstream as pictures have been taken, several hundred
wake diameters.

In a mixed flow zone of this type, a probe stationary relative to
the disturbance (e.g., the wall in a turbulent boundary layer) will be
swept over by successive sections of turbulent and nonturbulent fluid.
With a hot-wire anemometer this yields an "intermittent" signal of the
type which led to the discovery of this characteristic of free turbulent
boundaries (ref. 2). The relative time spent by the probe in turbulent
fluid was first measured by Townsend (ref. 6) and called the "intermit-
tency factor™ 7.

Most steady-state shear zones spread with increasing downstream
distance., Therefore there cannot be even rough over-all flow similarity
unless the average lateral position and the wrinkle amplitude of the
sharp boundary both increase at roughly the same rate as does the momen-
tum width of the shear flow. Since it is well-known that most "simple"
turbulent shear flows exhibit a rough over-all similarity, it can imme-
diately be anticipated that this turbulence front must (a) propagate
relative to the local fluid in the same sense that a flame front propa-
gates through a combustible mixture and (b) increase its geometrical
amplitude with increasing downstream coordinate.

The explanations of these necessary properties of the turbulence
front are two of the explicit purposes of this investigation. The two
properties are to be measured and to be analytically related to physical
properties of the turbulence in the fully turbulent zone.

For any x-station, the intermittency factor y(y) is just 1 minus
the distribution function of Y(t), the instantaneous location of the

1The term "laminar" is reserved for a nonturbulent flow in shear,
that is, where viscous forces are important. This is in contrast with
the terminology introduced in reference 2, where "laminar" was used to
indicate any nonturbulent flow. Of course, in practice, a "nonturbulent"
flow may be one whose turbulence level is much lower than that of the
contiguous "turbulent" flow,
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sharp front between turbulent and nonturbulent fluid. For a fixed x,
Y(t) is a stationary random variable, and

7(y) = probly < ¥(t) < (1)

Since y(y) is differentiable (in fact nondifferentiable functions
cannot be experimentally so identified), Jy/dy is the probability
density of Y(%).

A priori the fact that the free turbulence boundary (vorticity
fluctuation boundary according to the physical picture proposed here)
remains sharp can be attributed to the continuous irregular stretching
of the local vorticity gradient in the boundary, that is, to the fact
that the vorticity propagation process is nonlinear; for a given
stretching rate, the production of new vorticity is proportional to
the amount already present. This must be balanced on the average by
the viscous diffusion of the vorticity gradient at the front.

It is obvious that the random vorticity field ordinarily called
turbulence can propagate only by "direct contact," as opposed to action
at a distance, because rotation can be transmitted to irrotational flow
only through direct viscous shearing action. This insures that under
ordinary circumstances the turbulence front will always be a continuous
surface; there will be no "islands" of turbulence out in the free stream
disconnected from the main body of turbulent fluid.

The analytical estimates will include a hypothetical case in which
the turbulent part of the flow field is also without shear. This is
perhaps the simplest conceivable case under which turbulence propagates
into nonturbulent fluid - provided that one can neglect the necessary
monotonic time decreases in turbulent energy per unit mass. Under these
conditions it is proposed that the distinction between "turbulent" and
"nonturbulent" zones is the presence or absence, respectively, of random
vorticity fluctuations.

A more complex case is the one ordinarily encountered in practice,
as described before: a shearing turbulence encroaching on a nonshearing
(irrotational) nonturbulent fluid. In this case, the average propagation
veloecity of the turbulence front should also depend upon the mean shear
stress in the turbulent fluid near the front.

A somewhat different situation, not included fully in the above
classes, occurs in the "transitional" spreading of a turbulent shear
region into a shearing laminar region, when the principal shear planes
of laminar and turbulent flows are parallel to each other but perpen-
dicular to the mean propagation front.
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Such a phenomenon was first studied experimentally by Charters
(ref. T7), who called it "transition by transverse contamination."
Emmons (ref. 8) has given good experimental evidence that transition
from laminar to turbulent flow may often occur in this way, usually
from irregularly generated "ignition" spots in the moving fluid, and a
preliminary analytical discussion of the turbulence spread under these
conditions has been given by Mitchner (ref. 9). However, it appears
that Mitchner has omitted from his nonturbulent region the very shear
which distinguishes the transition problem. It is not intended that
this important case be included in the present report. Although some
of the same phenomena may occur as in the simpler nonshear boundary, it
is possible that the dominant turbulence propagation mechanism is d4if-
ferent., In particular, it may be that a destabilization of the already
rotational flow occurs in addition to a transmission of random vorticity
by direct viscous action at the turbulent-laminar interface.

When the present work was begun, it was hoped that the problem of
propagation of turbulence into a nonturbulent flow could be studied at
the boundary between a grid-generated isotropic turbulence and a non-
turbulent flow moving at the same uniform speed. This would eliminate
the shear stress entirely, although involving a relatively rapid
turbulence-level change due to viscous dissipation with no turbulent
energy production.

The principal generating arrangement tried was a "half grid" con-
sisting of a conventional l-inch-mesh, l/h-inch-dowel grid covering
half the tunnel cross section, with a fine mesh screen of virtually
identical static-pressure drop covering the other half. Unfortunately,
* anomalous boundary behavior, arising from complexities in the flow
© around the joint between grid and secreen, could not be eliminated with
a reasonable amount of effort. Therefore the turbulence propagation
has been studied in situ, chiefly at the outer edge of a low-speed tur-
bulent boundary layer, with a few measurements in a round jet for an
additional check of some particular phenomena. For completeness, some
of Townsend's plane-wake data (ref. 10) have also been analyzed in the
light of this investigation.

The general purpose of this investigation has been to measure
statistical properties of the propagating turbulence front to permit
gqualitative or even rough quantitative theoretical explanation of the
phenomenon.

The work has been carried out at the Department of Aeronautics of
The Johns Hopkins University with the financial assistance and sponsor-
ship of the National Advisory Committee for Aeronautics. The authors
should like to acknowledge the assistance of Miss Vivian O'Brien,
Mr. Aristoteles Scoledes, Mr. Donald Johnson, and Miss M. Ann Emmart,
as well as the critical advice of Dr. Francis H. Clauser and Dr. Mark V.
Morkovin.
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SYMBOLS
A characteristic ordinate in sketch (d)
a random variable representing some flow property
am same property, taken in turbulent flow only
B constant
b random on-off signal, taken between zero and 1
C,D random variables
Ce skin friction coefficient, QT; 5
2 ” 3

d diameter of rod used to produce plane wake
Fc,Fa,FaT,Fb power spectra
G scalar function
h height of wall roughness
I random variable
K parameter in model of laminar superlayer, equivalent to

vortex stretching rate
k wave number
L transversal Eulerian scale
Ly Tagrangian time scale
I, Lagrangian length scale, V'L
1151 average pulse lengths of intermittent signal

M empirical constant
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T1,To

exponent of boundary-layer power-law velocity profile

average frequency of occurrence of any particular value
of random variable I(t)

average frequency of occurrence of Y and zero, respec-
tively, in front-location variable Y(%)

cyclic frequency
total static pressure

probability densities of turbulent and potential segment
lengths, respectively, in intermittent signal

total velocity wvector

velocity fluctuation vector,

O

4-8

dynamic pressure in free stream of wind tummel

instantaneous radial loecation of turbulence front in
round jet

Lagrangian correlation function
shear correlation coefficient, uv/u'v'
Reynolds numbersg of laminar superlsyer
turbulence Reynolds number, u'Mv

coordinate vector

radial coordinate in round jet

Jjet orifice radius

radial position at which U = = Upax &t a section of

the Jet

Mo ji=

total shear force vector (per unit area) at turbulent
side of superlayer, lying in plane of superlayer

segment (or "pulse") lengths of turbulent and potential
signal, respectively, in intermittent signal
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t time

U,V,W velocity along x, ¥y, and 2z, respectively

U; =49

ﬁg mean velocity on axis of jet or wake

ﬁ& mean velocity in free stream of boundary layer or wake

Ur "skin friction velocity," V;;7;

U, v,w velocity fluctuation along x, y, and =z, respectively

4y =4

V; average velocity of propagation of turbulence front rela-
tive to fluid (perpendicular to its own plane)

X,¥,2 Cartesian coordinates (x is measured from beginning of
working section in boundary-layer case)

X15¥15271 Cartesian coordinates alined locally with turbulence
front

Xy =L

Xo apparent origin of wake, boundary layer, or jet

Y instantaneous y-location of turbulence front for boundary
layer and wake

Y, =Y-Y

Yy instantaneous y,-location of turbulence front of plane
wake

-_yd in wake

Y (x - xo)l/g

yl/2 value of y at which mean velocity defect is half maximum

o, B radian frequency of wall oscillation in model of laminar

superlayer



NACA TN 3133

1>

6*

€15€0

-

<

i
N

Il

;M8

intermittency factor, relative time spent by a fixed
probe in turbulent fluid

instantaneous vector velocity Jjump across laminar
superlayer

boundary-layer thickness, the value of y at which
T2 Ty

boundary-layer displacement thickness
thickness of laminar superlayer

model superlayer thicknesses for mean and fluctuating
vorticity, respectively

momentum thickness of boundary layer
Iagrangian length scale in flow direction, Ulg

transversal Fulerian microscale of turbulence

Lagrangian time microscale

"microscale" of Y(t) times ﬁ;

Lagrangian length microscale, v'Ag

viscosity coefficient
w/p

kinematic viscosity coefficient,

total vorticity components in x- and z~directions,
respectively

total vorticity, E =@

vorticity fluctuation components along x, y, and 2z,
respectively

vorticity fluctuation,

1ol

giEQ-_-.Q.—

density
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a:\[(y-?)Q

Oik

= \ﬁ(la standard deviation of (Y - Y)= ¥y

stress tensor

T

To

‘l’a} \l’raT} W’b

o =
0

e

Operators:

/\g —
~ ~— ~—
-
i}

( ()2

(

time interval

skin friction stress

rate of dissipation of turbulent energy per unit mass of
fluid

Kolmogoroff (minimum) length, X = (va/rb)l/h

autocorrelation function of Yy(t)
autocorrelation functions of a, ap, and b

autocorrelation function of trigger output

total vorticity vector

vorticity fluctuation vector

average
"short" time or space average

root mean square

hypothetical variable equal to actual variable in turbu-
lent fluid only and obtained by deleting potential fluid
part of an intermittent oscillogram
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EXPERIMENTAL EQUIPMENT AND PROCEDURES

Aerodynamic Equipment

The wind tunnel (fig. 2) is an open-return NPL type with a 2- by
2-foot working section and a free-stream turbulence level at entrance
of uJ/U'= 0.05 percent and v'/T = 0.06 percent, at a mean velocity
of U = 26 feet per second.

In order to have a reasonably thick turbulent boundary layer in the
relatively short working section, a wall was used as a working surface,
and it was roughened by corrugated paper starting from the beginning of
the contraction. The corrugations, set perpendicular to the flow, were
roughly sinusoidal, with about 1/3-inch wavelength and 5/64-inch ampli-
tude (half height).

The extent of two-dimensionality in the boundary-layer flow was
checked by mean velocity profiles at several stations across the 2-foot
width of the working surface, at the farthest downstream station,

x = 102 inches. The uniform zone was 18 inches wide, with a boundary-
layer thickness of B = % inches Tfrom wall to free-stream velocity and,
estimating from reference 4, the transversal Eulerian scale was about
0.5 inch.

The boundary-layer measurements were all made at a free-stream
velocity of 37 feet per second. The static pressure was very nearly
constant along the working section (fig. 3). From comparisons with
earlier work on this type of flow (ref. 11), it appears that the flow
state is such as to have a "fully rough" wall condition.

The round-jet unit is sketched schematically in figure 4. The
orifice diameter was 1/2 inch and it was run at an exit velocity of
300 feet per second.

Hot-Wire Set

Most of the measurements reported here were made with the hot-wire
anemometer as sensing element. The basic amplifier and compensation
unit, constructed by Mr. C. L. Thiele, is described in reference 12.

The oscillograms were taken with a General Radio Type 761 camera photo-
graphing blue cathode ray tubes. Measurements of the statistical dis-
tribution of lengths of turbulent "bursts" were made by scaling directly
from the recorded oscillograms.

The power spectra were measured with a Hewlett-Packard Type 300A
wave analyzer, followed by a vacuum thermocouple. The strongly fluctu-
ating output was averaged by integrating with a fluxmeter and bucking
circuit as illustrated in reference 12.
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The hot-wires used were either 0.00010 inch platinum or 0.00015 inch
tungsten, with lengths of about 1.5 millimeters for the u-meters and
2 millimeters for the X-meters used to measure v', w', and uv. No
correction was applied for finite wire length.

Measurement of Intermittency

Following Townsend (ref. 6) the intermittency 7 is defined as the
fractional time spent by the (fixed) probe in turbulent fluid. Townsend
has measured 7y in two ways: (a) from the "flattening factor" (or
"kurtosis'") of the probability density of the intermittent signal
(ref. 6); (b) from the mean-square output of an on-off signal triggered
by passing the intermittent signal through a gate (ref. 10). The method
used here is a development of (b), the relative "on time" being measured
by counting a high frequency pulse signal as modulated by the on-off
signal. This should give more accurate results at low values of 7.

The over-all block diagram is given in figure 5. Figure 6 is a
further breakdown of the manipulative details, with & schematic diagram
of a hypothetical signal as modif'ied by passage through the various
blocks. The actual circuit of this is given in figure 7. It is clear
from figure 6 that the number of pulses counted for a given input signal
will be a monotonically increasing function of discriminator setting.
Orie would like to find a wide range of discriminator settings over which
the count rate, for a given input signal, would be unchanged. Unfortu-
nately, there is no such indication of a "correct" setting for the dis-
criminator, possibly because of the lag introduced in the necessary
smoothing process. A typical illustration is given in figure 8.

In practice the discriminator level was set for each signal by
visual observation on a dual-beam oscilloscope of simultaneous traces of
the differentiated hot-wire signal and the corresponding trigger output
(e.g., fig. 9). The settings of the "noise clipper" and of the smoothing-
filter time constant were chosen by visual comparison at the beginning of
the sequence of tests and kept fixed for the entire investigation.

The intermittency circuit was designed and built by Mr. Donald S.
Johnson.

Vorticity Fluctuations

The pyramidal configuration of four hot-wires connected in a
Wheatstone bridge, responding primarily to the vorticity fluctuation
component along the flow direction is due to Kovasznay (ref. 13). Fig-
ure 10 is an isometric sketch and a wiring diagram. Some of the perti-
nent details are given in reference 1k.
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Calibration of sensitivity to vorticity has been tried by spinning
the meter about its axis (ref. 13) in a uniform flow, but for the meas-
urements presented here an indirect method was used: the readings in a
decaying isotropic turbulence were compared with the values of vortiecity
fluctuation level computed from turbulence level and microscale measure-
ments. Estimates of the parasitic sensitivities, especially to the three
components of turbulent velocity, were made by measuring the steady-state
yaw and speed sensitivities in a low-turbulence stream. These were found
to be negligibly small for the particular meter used in getting the &'
data. No correction has been made for finite wire length (the lengths
were about 1 millimeter), and no correction has been made for the non-
zero ratio of wire spacing to turbulence microscale, a characteristic
giving parasitic sensitivity to the second derivatives of velocity
fluctuations.

Mean Velocity Profiles

A flattened no. 20 hypodermic needle was used as total-head tube
in the measurement of the mean velocity profiles from which boundary-
layer and jet thicknesses were determined.

Although exact wall location is probably a meaningless concept for
rough-wall boundary-layer flows, the choice of such a reference value
of y 1is convenient for presentation of data in familisr coordinates.
Therefore a "y = 0" reference was chosen by extrapolation to zero of the
mean velocity profiles, from a region outside the boundary tangent to the
- corrugation peaks. In order to minimize scatter near the '"wall," all
- total~head traverses were made at the same phase position in the corru-
- gation peak. A slight cutout on the downstream side in each case per-
mitted the total-head tube to go completely into the boundary.

Since the exact details of mean velocity profile shape were not of
primary concern in this investigation, no correction for the effect of
turbulence has been applied to the total-head tube data.

MEASUREMENTS

Mean Velocity Fields

Rough-wall boundary layer.- Mean velocity profiles as determined
from total-head tube measurements are plotted in dimensionless form in
figure 11. There is reasonably close similarity. Of course exact simi-
larity -is not to be expected since boundary-layer Reynolds number varies
considerably with x and effective roughness varies slightly.
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The momentum-thickness distribution

e(x)zfow §—<1 - g-) dy (2)

is given in figure 12. The solid line is a simple power law drawn from
the apparent origin x = x,. The similarity shown in figure 11 is close
enough so that the displacement thickness,

5%(x) .=.fo°°<1 ] ﬁﬁ') 2y (3)

and the "total thickness" &(x), the value of y at which U=z U,, are
assumed proportional to 6(x) for the purpose of later figures. The
8(x) wvalues are assumed to be more relisble than &% because equa-
tion (2) deemphasizes the relatively uncertain region near the wall.
The values of 5%*(x) and 3(x) are then given by 6(x) times the
average values of 5%/60 and 8/6. These values are 1.47 and 7.2,
respectively.

The skin friction coefficient

T

(o]
— (&)
Uw

CfE

o

computed from 6(x) by the Von Karmén integral relation,

cf=2§§ (5)

is included in figure 12.

Round jet.- Figures 13 and 14 present data for the round jet corre-
sponding to the data for the boundary layer. The tail depression is, of
course, due to the directional sensitivity of the total-head tube; at
the Jet edge, the mean velocity is chiefly radially inward. These meas-
urements agree with the results of references 2 and 12 on velocity profile
and linearity of .jet momentum spread with =x. However, the angle of
spread is slightly greater than that in reference 2, being 10.8° total
angle for the half-velocity cone as against 9.5° in the earlier work.
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Possible factors in this difference are the following:

(a) Different orifice boundary conditions: in reference 2 the jet
emerged from a plane wall about 25 orifice diameters in width; here
there was no wall.

(b) Different Reynolds numbers: at the same X/ry this jet field
has a Reynolds number five times bigger than the one in reference 2.

(¢) Different measuring instrument: the mean velocity profiles of
reference 2 were measured with a hot-wire anemometer while these were
measured with a total-head tube. 1In neither case were the data corrected
for the (different) effect of turbulence on apparent mean velocity.

However, the difference is of no interest here since the principal
concern is a comparison of the relative behaviors of over-all mean flow
field and irregular turbulence front.

Character of Fluctuations

The intermittent character of the outer part of the turbulent
boundary layer is indicated by typical oscillograms. Figure 9 includes
u(t) and Ju/dt, while figure 15 includes u(t) and £(t). Obviously
there are still appreciable velocity fluctuations in the "nonturbulent"
parts of the flow. These are of relatively low frequency. The typical
time record of vorticity fluctuations ¢&(t) indicates that the non-
turbulent parts are irrotational, since the order of magnitude of the
low-frequency fluctuations visible between turbulent segments can be
accounted for by parasitic sensitivity in this particular vorticity
meter.

A definite property of the u(t) oscillograms is one-sidedness of
the turbulent bursts. This result shows that on the average the bulges
of turbulent fluid are moving more slowly than the nonturbulent fluid
passing by the same lateral y-position in the boundary layer. This is
not surprising, since such turbulent bulges must largely "originate"
from further in toward the fully turbulent region, which is a region of
lower mean velocity in the boundary-layer case.

This one-sidedness is sharpened up a bit by the fact that (as will
be proved later) the irrotationally fluctuating fluid must be traveling
at the same mean velocity as the free stream.

The qualitative description of the turbulence propagation phenomenon
given in the "Introduction" requires that it actually takes place through
a (presumsbly thin) viscous shear layer plastered all over the boundary.
In fact, this "laminar superlayer" is the boundary between turbulent and
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nonturbulent fluid. Inspection of the oscillograms reveals no clear
similarity among all the beginnings and ends of the turbulent bursts,
but this is not a contradiction of the physical picture. Any such tend-
ency must be completely masked by the randomness of velocity gradients
(and hence the shears) in the laminar superlayer. Furthermore, the
boundary itself is an irregularly wrinkled surface in three dimensions
so that the relative orientations of hot-wire and boundary at the
moments of immersion and withdrawal are also random.

Turbulence Levels

Turbulence~level distributions for the three velocity components
u'/U '/U and w'/T at the boundary- -layer station studied in detail
(x = 102 inches) are plotted in figure 16, with the corresponding mean
velocity profile included for reference. Clearly the velocity fluctu-
ations due to the presence of the boundary layer extend far outside the
region conventionally identified as the boundary layer.

Variation of turbulence level in the x-direction, for corresponding
locations in the boundary layer, is indicated by V'/U’ versus x at
several fixed values of y/& (fig. 17). Since the Prandtl “friction

p=
velocity," U, E\/E?, is probably the basic reference quantity with the

Length
Time

corresponding positions in the boundary layer, u', v', and w' « Up..

In turbulent pipe flow, Iaufer (ref. 15) finds that v'/Ur versus radius

is independent of Reynolds number except in the vicinity of the wall.
This suggests that, in the boundary layer, v'/U} versus y/6 may be

constant away from the wall. Figure 17 shows at least no clear-cut
contradiction with this hypothesis, within the over-all experimental
uncertainty.

dimensions of in a solid-wall shear flow, one expects that, for

Turbulent Shear Stress

The turbulent shear stress-distribution -puv(y), at x = 102 inches,
is presented in dimensionless form in figure 18 and shows the same
behavior as in the smooth-wall cases (refs. 4 and 16), approaching zero

appreciably faster than the squared fluctuation intensities (u')2,

(v')2, and (W')2° The shear correlation coefficient Ry, = uv/u'v'

becomes quite uncertain in the outer part of the boundary layer because
the measurement then involves the taking of small differences between
relatively large uncertain readings.
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Vortiecity Fluctuation level

The measured distribution of root-mean-square vorticity fluctuation
(g', the x-component only) across the boundary layer at x = 102 inches
is given in figure 18. The instrument was by chance sufficiently sym-
metrical that, within the purposes of this investigation, no correction
for parasitic sensitivities was necessary.

Intermittency

Boundary layer.- The transversal distributions of intermittency
y(y) at several x-stations in the boundary layer (typical comparison
with U/U, in fig. 19) show good similarity when y is normalized with
o(x), the square root of the second moment of Jy/dy with y-origin
chosen so that 57 ay has zero first moment (fig. 20). As pointed out
in the "Introductfon," oy/dy is the probability density of Y(t), the
instantaneous y-position of the front between turbulent and nonturbulent
fluid, at a fixed x. Then

1/2

1/2
o(x) = [(Y - ?)il = [f (v - ?)2 %Zy d(y - Y) (6)

where Jy/dy is written as a function of (y - ¥). Therefore o(x)
is a suitable measure of the width of the intermittent zone, that is, of
the wrinkle amplitude of the turbulence front.

Another important statistical measure of the turbulence front is
its average location,

y'(x):f”y%;_dy (1)

Since ay/ay turned out to be symmetrical and in fact virtually
Gaussian, within the experimental precision (see section "Probability
Density of Y(t)"), the determination of o and Y was considerably
simplified. Both o(x) and Y(x) are given in figure 21 and &(x)
is included for comparison. The logarithmic plot was used to estimate
exponents in power-law approximations for the three quantities.

The power-law fitting has been done with the "best" common origin
for the three sets of points in order to simplify the comparison concept.
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Round Jjet.- Intermittency data for the round jet corresponding to
the data for the boundary layer are given in figures 22, 23, and 24.

Townsend's plane wake.- For convenient comparison Townsend's last
published data (ref. 10) for the plane wake have been put into a form
corresponding to that of the other data (figs. 25, 26, and 27).

Since, however, only the points for x/d = 800 and 950 are in the
fully developed wake, no attempt has been made to determine separate
power laws from his data. Instead, parabolas have been drawn with his
choice of apparent origin simply to show his results are not in contra-
diction with the parabolic o(x) and ¥Y(x) (predicted theoretically
in a later section).

Statistical Analysis of On-Off Intermittency Signal
(Output of Schmitt Trigger)

As sketched in figure 6, one stage in the electrical signal manipu-
lation sequence is a two-valued (on-off) random function. These flat-
top pulses have duration equal to the time spent by the hot-wire in tur-
bulent fluid and spacing equal to the time spent in nonturbulent fluid.

Two basic statistical characteristics of such a random on-off signal
are (a) its power spectrum and (b) the probability densities of its top
lengths and its bottom lengths. Except in special cases, no one has yet
deduced a relation between these two functions (see section "Probability
Density of Pulse Lengths").

Since the jumps in this signal are generated by the random occur-
rence of a particular amplitude of a more general stationary random
variable, that is, Y(t), its properties give some information on the
properties of Y(t). For example, the probsbility densities of top and
bottom lengths indicate the statistical distribution of "wavelengths" of
the turbulence front, though less directly than the way in which Jy/dy
gives the statistical distribution of amplitudes. A detailed discussion
follows, in the section "Statistical Description of Turbulence Front."

The power spectrum of the on-off signal must be related to that of
the total hot-wire signal, though not in any simple fashion. As will be
pointed out later, considering the total signal as continuocus turbulence
modulated by this on-off signal, it appears that carrier and modulation
must be statistically independent for the power spectra to combine

simply.

Figure 28 is a series or power spectra Fc(n) of the Schmitt
trigger output at various y's, for x = 102 inches. Statistical
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symmetry of Y(t) (indicated by the approximate symmetry of Jy/dy)
requires that Fo(n) for intermittency 'y = 7y be equal to Fe(n)

for intermittency ¥ =1 - y,. Figure 29 gives the probability densi-
1

ties of tops and of bottoms at the same hot-wire locations. These were
obtained by direct measurement of oscillographic records.

The solid line in figure 28 is the theoretical power spectrum for a
random flat-top signal whose jumps have a Poisson distribution in time
(see section "Power Spectrum of Schmitt Trigger Output," especially

eq. (88)).
THEORETICAL EXISTENCE OF TURBULENCE FRONT

Although the relatively sharp front between turbulent and "nontur-
bulent" fluid has been well established experimentally, this apparently
ubiquitous phenomenon must still be explained and explored analytically.
The oscillographic records indicate that it is likely to be a boundary
between rotational and irrotaetional motion. The theoretical discussion
will therefore aim first at heuristic demonstration of this concept by
showing in this context the known fact that turbulent stretching of the
vortex lines in a local vorticity gradient tends to steepen the gradient
(leading of course in the limit to zero vorticity on one side).

Succeeding sections will discuss some of the ramifications of this
physical picture, -in preparation for the more detailed analyses which
follow. The degree of agreement between the predictions of these anal-
yses and actual experimental results will provide further indication of
the validity of the hypothesis that the "nonturbulent" fleld is actually
irrotational,

Steepening of a Vorticity Gradient With
TLocal Production of Vorticity
Since the distinction to be made here between turbulent and non-
turbulent flow is on the basis of presence or absence, respectively, of
random vorticity fluctuations, the boundary phenomena must obviously be
studied in terms of vorticity as a principal characteristic variable.
The vector form of the vorticity equation for three-dimensional

incompressible viscous flow is

2. (2. v+ wha (8)
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where ;Q-E <£l-+ Q - V> is the Stokes derivative (following a fluid

Dt ot T
element), € 1is total vorticity vector, Q is total velocity vector,

and v 1is kinematic viscosity.

Introducing a Reynolds type restriction:

it
(@]

Q(r,t) = 2(r) + w(r,t) @

Q(r,t) = Qxr) + q(r,t) =0

il

equation (8) yields the mean-vorticity equation:
(Q-v)g+ (g Vo= (T -V)Q+ (w-V)g+wg (9)

Subtracting equation (9) from equation (8) leaves the equation for
vorticity fluctuation:

ab [
Sr@-via+ @-Vie+ (g Vie- (g V-

(@-V)a+ (@-V)a+ (0-V)g - (@- Vg +we (10)

The scalar product of ® with equation (10) gives the equation for
instantaneous vorticity intensity:

_w_»E@ev)g:l+_a_>°li(gvv)g:]-go'[(gov)%+vggo(\729) (11)

VR § o
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In Cartesian tensor notation, but keeping vorticity as a vector
instead of an antisymmetric second-rank tensor,

1 _2 + E.u ?El_ - Elu EE.]; = g:;_‘ _a\_i]; + E.E aﬁl +
2 Dt 1) 0 o, 3 173 x
J dJ dJ
du, du
i i 2
gigj g‘ ﬁi §j g— + V§iV §i (11a)
dJ J
where a repeated index indicates summation, and m? gkgk,
The averaged equation is
2 —_— = du
1= 19 ( 2> E; - 1
= U e b = — | U™+ BiUs ——— = SsE. —— +
J J i%J J51
200 &y 2 oy o O
3, dy; T

It was Taylor (ref. 17) who first identified §i§j 8§£ as the rate
J

of production of vorticity fluctuations by the random stretching of
vortex lines. It is largely the absence of this effect that makes fully
two-dimensional motion trivial in the problem of fully developed
turbulence,

To demonstrate the tendency of a vorticity gradient to steepen in
the presence of this vorticity production effect, consider the simplified
form of equation (lla) for a flow with no mean velocity or vorticity:

1af 1. &P s\
25 TE Ny T\ MNE)T

aui aui 2
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It appears that no conclusion can be reached without further restriction.

Since the vortiecity spectrum varies like k2F(k), the running second
moment of the veloecity spectrum, vorticity-dominated phenomena must be
associated with the fine structure of the turbulence, especially for
high values of turbulence Reynolds number RK = u'%/v, where u' is

root-mean-square velocity fluctuation in the x-direction and A is the
Eulerian "microscale." For large enough values of R; there should

exist a time long compared with that characterizing the main body of
vorticity fluctuations but short compared with that characterizing the
largest scale velocity fluctuations, which dominate the convective
properties of the turbulence. For example one can expect

1«1 (1)
E'N¢

where &' 1is the root-mean-square x-component of vorticity fluctuation
and A, is the Lagrangian time microscale (ref. 1). Introducing

M o= V' (ref. 18) and, with local isotropy, the isotropic relation
E' = 5 %%, equation (14) becomes

o.h5<l> << 1 (15)
My

or, in terms of Ry the large Rk approximation for %/%n gives

(ref. 18)
2.4 « 1 (16)
B

For flows with equation (16) valid, equation (13) could be averaged
over a time long enough to average vortlcity phenomena but short for
convective velocity phenomena:

e

2 2 Ou
1w 1 dw i 2
.é.___+_é.uj.&;~§i§j__j+ vgiv gi (]_’Z)
where ( ) = ( for the fine structure variables.

The velocity derivative has characteristic time like that of vorticity.
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~rn

Since the objective is to show the steepening of the w? gradient

in the absence of v, omit the last term and write

aui
~ Eigj '51:5 (18)

=
|8

Therefore,

p(a2) > duj
ﬁ(&‘) ~ g giéj gx—j (19)

PO+

Sus
Taylor (ref. 17) has shown that gigj §;£ > 0 for isotropic turbu-
J
lence, In fact, since this inequality just expresses the general tend-
ency for fluid lines to lengthen in a turbulent flow, it seems clear that

gigj —=>0 in any turbulence. Then, if gigj — is monotonic with

Ox 5 Ox 5
) D 0’

0", 1t follows from equation (19) that S;_ has the same sign as

Ay

awg/ay, which means a steepening of this «° gradient.

The physical reason for the steepening tendency is, of course, just
the fact that the rate of production of new vorticity by line stretching
is proportional to the vorticity already present at any point in the
fluid. Hence the higher vorticity regions experience a greater rate of
increase of vorticity than the lower vorticity regions, that is; the
gradients tend to steepen up, limited finally by viscous diffusion and
dissipation. Of course the gradient of concern here is that in the zone
between fully turbulent fluid and nonturbulent fluid. A steepening of
this gradient means a tendency toward a relatively sharp surface of
demarcation between the two states. The above discussion does not treat
the question of the "equilibrium" thickness € of the "laminar super-
layer" that results; this will be estimated later. Of course, for the
turbulence front to be sharp as observed experimentally, it must be
shown that € << d.

Although the analysis is valid only for extremely high values of
R%’ far higher in fact than occur in the experiments reported here,

there appears to be no reason for the situation to change qualitatively



ol NACA TN 3133

at lower values of R,, as long as nonlinear effects in the Navier-Stokes
equations remain important, for example Ry > 10.

Laminar Superlayer

Vorticity can be transmitted to an irrotational flow only through
the tangential forces due to viscosity; it cannot be transmitted to the
irrotational flow by macroscopic Reynolds type shear forces. It there-
fore follows that the instantaneous border zone lying between turbulent

- fluid and irrotational fluid must be a region in which viscous forces
play a central role, in spite of the presence of velocity fluctuations
which dominate the gross momentum transfer of the turbulent field. This
border zone may be termed the "laminar superlayer" and is exactly what
is also referred to in this report as the "turbulence front," although
the latter designation implies emphasis on its over-all behavior rather
than its detailed structure.

This laminar superlayer differs in function from the well-known
"laminar sublayer" at the smooth solid boundary of a channel, pipe, or
boundary-layer flow. The sublayer is a relatively fixed region in which
mean flow momentum is transported primarily by a net mean viscous .
(laminar ) shear force. It transmits little mean vorticity (being a zone
of roughly constant Q(y)) and it remains "attached" more or less to the
same fluid particles. On the other hand, the superlayer is a (convec-
tively) randomly moving layer of fluid which probably transports rela-
tively small amounts of mean momentum and vorticity by viscous shear
forces; its distinguishing function is transport of vorticity fluctu-
ations, and mean vorticity when present, into what was previously an
irrotational field, and in so doing it continuously propagates (rela-
tively to local fluid) normal to its local "plane."

Sketches (a) and (b), below, illustrate the concept of the super-
layer as a very narrow zone in which the vorticity fluctuation level
and the total shear (if any) drop from values characteristic of fully
turbulent flow to practically zero:

Fluctuating

U = Un potential flow

I . Laminar superlayer
7

TN T T ___/ = ’

U(y) Turbulent flow
Sketech (a)
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%l § e

~ or shear

Coordinate fixed in front,
and perpendicular to it

Fo
g

| T
Turbulent | Laminar ' Potential 1
flow | superlayer : flow
| |
Sketch (b)

While the instantaneous local viscous shear force in a laminar sub-
layer is predominantly in the direction of the mean shear force, that in
the superlayer must have a much higher "fluctuation level," often
reversing its direction, for example. In fact, in a flow field with
constant mean velocity everywhere, the superlayer viscous shear force
would have no "D.C. component" at gll, that is, no mean value.

The discussion headed "Steepening of a Vorticity Gradient With
Iocal Production of Vorticity" is a justification (not a proof) of the
experimental fact that the continuous fluid-line stretching due to the
velocity fluctuations tends to steepen up the laminar superlayer. This
steepening effect is reinforced by the propagation and must of course be
balanced out at some state by the diffusive action of viscosity, so that
the superlayer must have some average thickness., From the oscillograms,
it appears that this guantity, € say, is very small.
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Some heuristic comments can be made about this thickhess. First
of all, since the layer is primarily a vorticity-propagating device,
its thickness should be less than a length characterizing vorticity
fluctuations on the turbulent side of the boundary, for example, the
dissipation scale A (Taylor's "microscale"). In fact, as a character-
istic viscous shear length, it might be expected to be the same order as

stlh

Kolmogoroff's minimum length <—— » Wwhere ¢ 1is the rate of dissi-

0]
pation of turbulent energy per unit mass of fluid.

A second intuitive specification is that, as a violently disturbed
free laminar shear layer, its characteristic Reynolds number should be
on the order of the lower critical Reynolds number for free laminar shear
layers. A possible choice of characteristic instantaneous Reynolds num-
ber would be that based on thickness and instantaneous tangential velocity
difference A across the superlayer. When the instantaneous viscous

shear force, S =npu %ﬁ ver unit area in the plane of the front, has a

nonzero average (i.e., a preferred direction), a plausible average
Reynolds number might be

€

>

1Re = (20)

“|

where A 1is the magnitude of A. Of course, A and ¢ are doubtless
negatively correlated, but inclusion of such a refinement would be
inconsistent with the crude nature of the discussion.

For turbulence fronts in whieh there is little or no meah velocity
difference across the superlayer, the above definition is inapplicable
and might be replaced by

B
m}

R =

2¢ (21)

<|

again omitting the implications of ZE correlation.

Since, however, there still exists no analysis relating A to the

—

properties of the turbulence, a third definition, replacing 1 2Re and
J
including such properties, is preferable:

(22)
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In fact, this definition is not too different from the other two:
A/e must be of the same order as the neighboring turbulent vorticity
fluctuations.

Given an order of magnitude of the lower critical Reynolds number
for free laminar shear flow plus a measurement or estimate of

w' = Jga + n2 + §2 in the turbulence near the front, an estimate can
be made for €.

The only information available for estimating the desired Reynolds
number is the partial analysis of Iessen (ref. 19), a small-perturbation
analysis. Extrapolation of his neutral stability curve (a highly inac-
curate process) suggests an estimate,

1< Rg < 10

The measured turbulent values of &' for a typical case (fig. 18)
is about 400 per second, which gives o' = 700 per second, if there is
approximately local isotropy. With v = 0.15 square centimeter per
second the estimate of superlayer thickness turns out to be

0.015< € < 0.05 centimeter

This appears to be a reasonable order of magnitude since A = 0.2 centi-

1/h
meter in this part of the flow. The Kolmogoroff length (%;) is
roughly 0.03 centimeter.

In concluding this section it should be mentioned that, although
no systematic measurements of A have been made, rough estimates from
oscillograms in the intermittent zone of the boundary layer indicated

the order of 0.05 to 0.10 times U,. This average velocity defect indi-

cates the obvious fact that turbulent boundary bulges "originate" in a
region of lower mean veloclty and also represents the presence of vor-
ticity and of locally laminar shear.

A simple mathematical model of the laminar superlayer will be taken
up as a separate section in the discussion of propagation velocity of the
turbulence front.

The following important inference can be made on the basis of the
highly localized character of the laminar superlayer: Since no appreci-
able viscous effects extend beyond this thin layer, and since only viscous



28 NACA TN 3133

effects can transmit vorticity, it follows that the mean velocity every-
where in the potential part of the flow must be constant and equal to
that at "infinity." This is a consequence of the fact that the mean

vorticity is @ = oU/dy.

This conclusion will be analytically emphasized in the following
section. It is in contrast with an assumption of Townsend (ref. 10)
that the nonturbulent fluid lying between bulges in the turbulence front
"is constrained by pressure gradients to move at the same mean velocity"
as the fluid in the adjacent turbulent bulges.

Irrotationality and Reynolds Shear

In view of the evidence that the  fluctuations outside a turbulence
front are irrotational, it is pertinent to take a look at the customary
turbulent-flow equations (actually valid for any stationary fluctuations)
for the particular case of irrotational fluctuations. The hope is that
some drastic simplification will appear.

In Cartesian tensor notation, the Reynolds equation for steady mean
motion is

— JU D ~
T S N % - () (23)
Ixy P Ox;
The last term is the turbulent "apparent force vector,"” or "Reynolds
vector."
For irrotational fluctuations,
du: OJu.
R (24 )
Sy  oxg
therefore
2y - 1 ) 13
3 179 2 dx; 23y

which shows that the Reynolds force reduces to a normal force only,
since it is expressible as the gradient of a scalar.
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The Reynolds equation can then be written

3,

Uy —
k3
k

R I

_a_xé_'.(ﬁ - ;5) + w2, (25)

and this form emphasizes the fact that regardless of the mean velocity
field, irrotational fluctuations give no net "apparent shear" forces

on a fluid elementz.

This does not necessarily mean, however, that the Reynolds shear
force on a plane is zero or that the Reynolds stress tensor -pujuy  has

only leading diagonal terms. Also there may still be a continuous "pro-
duction" of fluctuating kinetic energy, that is, a transfer from the mean

motion kinetic energy U 5 #0

Comparison of equations (23) and (25) for the case of motion two-
dimensional in the mean (three-dimensional irrotational fluctuations)
yields the following relations for the Reynolds shear force components:

%lyl"i:.;.%(;éw‘é-?) (26)
duv 1 0O - R
3 "5 ay(u v2) (27)

which may also be regarded as & pair of differential equations relating
the four nonzero components of the Reynolds stress tensor.

Two provocative forms follow from alternative combinations of equa-
tions (26) and (27):

v tw_ P (7. ) (26)
axz aye Sx ay
and
Fw , Fw _ St (9)

BX2 ay2—axay

2This fact was pointed out by Dr. F. H. Clauser.
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Equation (28) gives the interesting conclusion that if (u2 - V2)
is constant in either x or y the turbulent shear stress satisfies
a homogeneous plane-wave equation with characteristics at #45° in the
xy-plane.

For the particular flows studied in this report, the experimental
results show that uv approaches zero faster than u'v' as y (or r)
is increased. This seems to indicate that uv = 0 in the potential
field. However, insufficient coverage and accuracy of the data preclude
the possibility of checking this through equation (28). Since

N

uv = u2 = v2 = 0 for y = o, such a check would require that u2 = v
throughout the potential field.

Parenthetically, viscous fluids with zero net shear force on a
fiuid element but with nonzero shear stress are far from unknown mathe-
matically: any irrotational laminar flow of a viscous fluid is such a
case (aside from the trivial case of g = Constant). The requirement on
a stress tensor o4, that it produce only normal forces 1is that

Sorx _ 30 (30)

where G 1is a scalar,

The principal significance of equation (25) in the general problem
under investigation is as follows: Assuming that the fluctuations on the
free-gstream side of the turbulence front are actually irrotational, as
both measurements and heuristic reasoning indicate, the mean velocity
there must be equal to that for y = »., This verifies the physical
inference drawn in the previous section from the concept of the localized
laminar superlayer.

It appears paradoxical that the mean flow kinetic energy should be
unchanged in a zone where there has appeared an appreciable kinetic energy
in velocity fluctuations. However, the latter can come from the turbu-
lent part of the field through nonviscous effects, leaving mean flow
kinetic energy in the potential zone unchanged. This would be consistent
with the inference that uv = O.

Probably the highest intensity random irrotational fluctﬁations
easily available in the laboratory are those in the "potential cone” of
a round turbulent jet. These apparently get as high as u'/U’w > percent
(ref. 2).

Equation (28) also can be deduced for the special case of a constant
mean velocity field with arbitrary fluctuations, provided only that the

mean values are plane, that is, éi ()=o0.
Z
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THEORETICAL BEHAVIOR OF TURBULENCE FRONT

As mentioned in the "Introduction," two of the fluid mechanically
pertinent characteristics of the relatively sharp boundary between tur-
bulent and nonturbulent fluid are (a) its mean rate of increase of
wrinkle amplitude in the downstream direction and (b) its mean velocity
of propagation transversely into the irrotational fluid. The following
sections represent crude theoretical attempts to predict these two char-
acteristies in terms of the statistical properties of the fully turbu-
lent fluid on one side of the boundary.

Wrinkling Rate

In turbulent flows with R, greater than about 10, there is no

reason to expect any particular chunk of fluid to return to the nontur-
bulent state once it has become turbulent. Therefore the presence of
turbulence in a small piece of fluid can be regarded as an indelible
tagging, somewhat like heat or chemical contaminant. Were it not for

the continuous propagation of the turbulence front into new fluid, this
front would always consist of the same fluld particles and would obvi-
ously be susceptible to a Lagrangian study in terms of Taylor's theory

of "diffusion by continuous movements," (ref. 20) as has been applied

to the wrinkling rate (1dentical to turbulent diffusion rate) of a very
thin sheet of thermally tagged fluid in a turbulent flow (refs. 1 and 18).

In fact, a uniform translational velocity V¥ of the tagging attri-
bute relative to the fluid does not render Taylor's concepts invalid;
it does, however, require a generalization of the analysis to a mixed
Fulerian and lagrangian treatment, though somewhat different from the
relative dispersion case set up by Brier (ref. 21) and by Batchelor

(ref. 22). Clearly in the limit of V* >> v' (e.g., wrinkling of a
Mach wave propagating through low-speed turbulence) it reduces to s

simple Eulerian diffusion problem, while in the limit of V¥ << v' the
purely lagrangian analysis of Taylor applies.

For the present problem it appears that neither of these limiting
conditions holds, although the latter is closer. Consider the rough-
wall boundary layer at x = 102 inches as an example:

Y

?
e

d (5 ~
X asz(Y - 5%) ~ 0.1

where v'/U is taken in the fully turbulent zone adjacent to the "inter-
mittent” zone., This formula is deduced in the section "Applications to
Particular Turbulent Flows."



30 NACA TN 3133

Since the basic problem (diffusion of a front propagating through
a homogeneous turbulence) has yet to be analyzed, the present phenomenon

will be estimated as though V< v, Subsequent approximations are
consistently rough.

Another peculiar property of the present problem is that the sur-
face whose turbulent diffusion is of interest has turbulent flow on only
one sidej; the thermally tagged surface used in conventional diffusion
studies has the same kind of turbulence on both sides. However, the
theory of diffusion by continuous movements is simply a kinematic anal-
ysis based on the presumably given velocity statistics of the fluid
particles in the surface. If these are correctly given, no further
information or restriction is necessary. Therefore, since the purpose

of this section is to predict the form of o(x) = d(Y - Y)° in terms
of the properties of the fully turbulent zone, the only additional
assumption necessary is that the velocity fluctuations of the fluid
particles in the front are proportional to those in the fully turbulent
fluid near the front.

The analysis of one-dimensional diffusion by continuous movements
for a homogeneous field with no mean motion leads to

9 - o(v')® | Rp(r) ar (51)

where ¢ 1is the standard deviation of the distance traveled, due to
turbulent convection, and Ry 1s the Iagrangian correlation coefficient.

For times long compared with that for which Ry, =~ O, the familiar asymp-
totic form results:

o(t) = v’VZLtt (32)
4]
where L gb/\ Ry, @t is the Iagrangian (time) scale.
0

If a relatively high uniform mean velocity in the x-direction is
introduced (U >> v') equations (31) and (32) can be interpreted

approximately in spatial terms since Ut = x for any particle (refs. 1,
18, and 23). ‘Then

§

o(x) ~ %? 2Arx (33)
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where Ap = ﬁLt is an approximate "longitudinal" Iagrangian length
scale.

It has been pointed out in previous publications (refs. 18 and 2k4)
that the most concise representation in such a flow follows from intro-
duction of a "transversal" lagrangian length scale, Iy = v'Li. Then

a(x) z‘}2(¥;>11x (34)
U

which gives the dispersion (identical to surface wrinkle amplitude) at
large distances from a fixed source of tagging, when v(t) following a

fluid particle is a stationary random varisble and U is constant.

For the hypothetical case of the turbulence front bounding a tur-
bulent motion homogeneous in the stream direction, this asymptotic form
would pertain; the "source" lies indefinitely far upstream. However, in
virtually all turbulent flows of interest, the statistical properties of
the motion vary with x. Consequently application of equation (34) to
these cases implies the further restriction that these x-variations be
"slow", that is, that there be little change in an x-interval comparable
with AL"

A particular example of the degree of validity of this restriction
can be drawn from the case of decaying isotropic turbulence, where
lagrangian scales have actually been measured (ref. 18). At 43 mesh
" lengths behind a l-inch-square mesh grid of l/h—inch dowel, with

U = 25.8 feet per second, it is found that v'/U = 2.0 percent,
AL, = 17 inches, and dv'/dx corresponds to a change of about 1/5 in

— 1 dlg, .
v'/U over an x-interval equal to Ap®  However, =— —= A1 1is only on

L, dx

the order of 0.03.

In most shear flows, the v'/U changes will be slower than for this
decaying isotropic turbulence while the I changes may be slightly
faster. 1In general it can be anticipated that in the application of
equation (34) to boundary layer, jet, and wake the requirement of "slow"
x-variations in turbulence properties will be satisfied at least as well
as the previously mentioned restrictions for this Ilagrangian treatment.
These applications, and comparison of computed values of o(x) with
experimental results, will be presented further along, under the appro-
priate section headings.
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Propagation Velocity by Dimensional Reasoning

The average velocity of propagation of the laminar superlayer (or

turbulence front) relative to the local fluid V¥ must be monotonic
with the average magnitude of the instantaneous (laminar) shear stress

in the superlayer (proportional to u %9. However, the ratio is not a

directly measurable quantity and must be replaced by something more
tractable. As has been mentioned in the section "Laminar Superlayer,"
when there is no mean shear stress A/e must be of the same order as

the vorticity fluctuations in the turbulent fluid near the front. There-

fore V¥ sghould be monotonic in ®'. Since this is a viscous phenomenon,
it must also depend upon v.

In fact, the inference that V¥ = V¥(v,®') can be made on a much
more direct and superficial level. Since the laminar superlayer is a
device for the viscous propagation of vorticity fluctuations into an
irrotational fluid (in the case of zero mean shear) the propagation
velocity must depend at least on ' and on v. Furthermore these alone
are sufficient to produce a parameter with the dimensions of velocity.

The only combination giving the asppropriate dimensions gives, by
inspection,

V* < 7o' (35)°

for zero mean shear stress. Of course, V¥ is directed perpendicular
to the local tangent plane of the turbulence front. The effects of non-
planarity of the whole front will be noted later in this section.

Equation (35) would be expected to apply, for example, in the case
of the boundary between a homogeneous turbulence and a nonturbulent
fluid, with U constant over the entire flow field.

At the free boundary of a turbulent shear flow it is to be expected
that the shear force vector of the laminar superlayer will have a
"D.C. component” which will also promote V¥*. If the whole front were
nearly flat, this D.C. component would be a function of y in the super-
layer and also proportional to the mean shear in the turbulent fluid just

3It should also be noted that the assumption that Re(E éew'/v)

has a "universal® average value corresponding to a lower critical
Reynolds number coincides with the dimensional plausible hypothesis that

&« \(v/w'.
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inside the turbulence frontu, varying from equality on the turbulent
edge to zero on the free-stream side. Sketch (b) includes this concept
in a coordinate system attached to the laminar superlayer.

In this more general case, the physical picture suggests that v*
depends upon the average magnitude of the total shear in the superlayer:

v* = Vi(sa), where S(t) = S5 + s(t) is the shear force vector on a unit

area on the turbulent edge of the superlayer. With Cartesian coordinate
system x7, Y¥yp, and 27 fixed in and alined with the turbulence front

(yl perpendicular to front), the fluctuation s has only x;- and
zq -components. Then, with gross mean shear directed along X715

82=§x2+sxl2+s 2-

Dimensional reasoning gives

/4
S\Y

2 2
S¢. "+ 8x. . + 84
ey t 1 1
— \,%' o (36)

p2

If the random slope of the turbulence front in the x, y, and =z
coordinates is small on the average, the X1, Yy, and z; system can

be replaced by x, Yy, and z, and S is proportional to the mean
Y Xy

“shear stress in the turbulence. Furthermore, with local isotropy in

the turbulence, SX12 ~ Sy 2, As in the simpler case, these are pro-

1
portional to (w')e. Then equation (36) can be written

1/k

—vy §¥2 + Bue(w')e

V¥ o 5 (37)
o]

where B 1is a numerical constant, probably of order unity. This reduces
to equation (35) for a shear-free turbulence. For each particular type

of turbulent shear flow, Sy can be taken proportional to some character-
istic mean shear stress. No application of equation (36) or (37) is made
later in this report.

N

In fact, F. H. Clauser proposes a propagation velocity, for the
turbulent boundary layer, depending only on the mean shear stress in the

turbulence: V¥ « To/p & (ref. 25),
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Handling of the propagation problem in terms of a plane turbulence
front implies that € is much smaller than the radii of curvature of the
front. The degree of validity of this assumption is not easy to check
directly from the statistics of the turbulent fluid; it requires fairly
detailed information on Y(x,t). However, the measurements on statis-
tical distribution of pulse lengths coming out of the trigger circuit
(fig. 29), transformed by U, from time to length, give indirect indi-

cation that the assumption is well satisfied.

Conversely, since V¥ is normal propagation velocity of the front
(especially in the case with zero mean shear), propagation with con-
stant V¥ over the whole front would tend to introduce a skewness into
the probability density of Y, as sketched below.

Potential
Turbulent
Sketch (c)

This is the effect mentioned by Karlovitz (ref. 26) in accounting for
the skew nature of the flame front as observed in a turbulent bunsen
flame.

The highly symmetrical shape of 0y/dy (indicated by linearity
in fig. 32) shows that this effect, if present, is negligible in the
phenomenon considered here.

This negligibility is an indication that the radii of curvature of
the front are large compared with the "wavelengths." This means that

V* is directed very nearly perpendicular to the Y(x) surface. TFor
two-dimensional flows in which the boundary-layer approximation applies,
this in turn is nearly parallel to the xz-plane, that is dY/dx << 1.
Therefore, within a corresponding approximation, the surface area of the
turbulence front onta two-dimensional flow is equal to its projection on
the xz-plane, and the average rate of conquest of new fluid by the turbu-

lent state is V¥, in units of volume per unit time per unit area of
"contact." A similar concept holds for the axially symmetric flows.
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It is obvious that a turbulent shear flow can have similarity only
if both o(x) and Y(x) are proportional to the boundary-layer thick-
ness &(x) (which of course must be proportional to any other charac-
teristic thickness defined in terms of the mean velocity profile). Stated
in different but related terms, the average rate of flow of turbulent
fluid passing through any constant x~plane must be proportional to the
rate of flow of boundary-layer fluid passing through the plane.

Model of Iaminar Superlayer

Dimensional reasoning as employed in the preceding section, and in
earlier ones, gives at best the functional forms of the laminar-superlayer
characteristics in terms of the statistical properties of the turbulence
with which it is associated. Fully quantitative results follow only
through deductive analysis, that is, actual solution of an appropriate
boundary-value problem. Since the actual problem appears to be too com-
plex for full solution at present, a simple physicomathematical model
will be used with the expectation that the results, after interpretation
in terms of pertinent variables in the actual problem, will give a proper
order-of-magnitude relation among these variables.

The model proposed is a generalization of the Stokes and Rayleigh
problem of the infinite wall moving in its own plane (ref. 27). _The
first extension is the addition of a constant suction velocity V(< 0)
with, of course, wall porosity. The velocity V corresponds to propa-
gation velocity of the turbulence front. The differential equations are
thus

oU . = oU _ Py
-—€+ ng——v—gy-—é (583‘)
H +V éﬂ = v ééﬂ (38b)
ot dy dy?

Since the U and W equations are independent they can be treated
separately. In the absence of mean shéar they are identical, and only
one need be considered.

Since equations (38) are linear, the vorticity components 27 = OU/dy
and = = OW/Jy obey the same equations as the velocities:

dZ = dZ oz
vy 22
” S v 2 (39a)
%J,v%: v——zy; (39b)
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These equations are to be
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solved with boundary conditions

Z(t,») = E(t,°) = 0 (40a)
2(t,0) = Zg + b sin at (40ob)
%(t,0) = &, sin Bt (%0c)

Since 5 has only a fluctuating part, and since linearity permits
separation of the steady and fluctuating parts of Z, the problem
becomes

g4z _ , 4% (41)
Y dy
with Z(w) = 0; Z(0) =Z, and
a, 53, % (42)
ot dy dy®

with §(t,») = 0; §(t,0) = {, sin ot. There is an identical boundary-
value problem for &(t,y).

To get closer equivalence to the fully three-dimensional problem a
purely mathematical extension can be made, corresponding roughly to the
physical phenomenon of continuous vorticity fluctuation production (by
fluid-line stretching) at a rate proportional to that already present.

This is most simply done by adding a linear term to the { equation,
giving
3 = Fe
=+ V=2=v —2+K¢ (43)
ot dy dy2

where K 1is like a constant average vortex-line stretching rate.

No corresponding term is added to equation (41) because the plane
form of the mean-vorticity equation for turbulent flow (eq. (9)) shows
no term identifiable as production of mean vorticity due to random tur-
bulent stretching of vortex lines.
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The solution of equation (41) is
Z = Z, exp <‘_v’ y) (¥ <0) (44 )

The solution of equation (43) is

5 1/2

R (DR RO ORI

(V< 0; @, K> 0) (15)

with a similar expression for §. Here the negative root has been chosen
so that equation (45) reduces to Stokes' solution for V = K = O.

From equations (44) and (45) it is desirable to extract an expres-
sion for the "thickness" of the disturbed layer. A convenient measure
of thickness is simply the inverse of the coefficient of -y in the
exponentials of both solutions:

(46)

€p = (""7)
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Application of equations (46) and (47) to the laminar-superlayer
problem requires identification of V, a, and K with measurable
variables in the turbulent fluid near the superlayer:

(1) -V »~ V*, the propagation velocity.
(2) o = &', the root-mean-square value of any one of the three
orthogonal turbulent vorticity fluctuation components. In other words,

root-mean-square vorticity may be regarded as a characteristic frequency
of turbulence. For large values of RX! E' = ' = {' Dby local isotropy.

(3) K as\/(%i—f ~ J(%)e ~ J(g—:-)z for large R;'s. Hence, with
K

~ t'/{5 1is a measure of the rate of fluid-line

local isotropy,
stretching.

Substituted into equations (46) and (47), these give

c gv
19
v*

m
n
]
=
—
=
\O
S

# 1 (FF o ]F e (FR e
S g e (-
2v {5’ 2v vﬁ; v 2v vﬁg

A simpler, more approximate form for e, 1is attained after inspec-

tion of the experimental orders of magnitude of V* and E'. For
example, at the inner side of the intermittent zone, in the rough-wall

boundary layer at x = 102 inches, v* = 1.3 inches per second and

£' ~ 40O per second. Therefore it turms out that equation (49) can be
simplified by liberal employment of chopped-off binomial expansions.
The roughest (and simplest) resulting estimate is

v
ep = ||— (50)
2=~ &

Since the laminar superlsyer can be assumed to exist even in the
absence of a "D.C." vorticity field, it is reasonable to assume that the
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fluctuating part of the superlsyer model is the more pertinent one.
Then one may take €s to be €, giving the theoretical prediction

€ \E- (50=)

as an order of magnitude. This is consistent with the earlier conjecture

on the constancy and order of a possible Reynolds number, R¢ = Eam'/v.

It does not appear to be susceptible of direct experimental verification,
but, as mentioned earlier, is of the same order as the Kolmogoroff
(minimum) length:

/4
T =X = <£> (51)

U]

which follows from equation (50a) and the relation between X and A.

No estimate of V¥ follows from equation (50) and, insofar as a
strictly fluctuating laminar superlayer is concerned, the dimensionally
induced equation (35) remains as sole prediction of propagation velocity.

However, equation (48), the "D.C." thickness, gives

v~ L (52)

€1
If there is a single layer, V¥  should be the same for both fluctuating
and average vorticity. If e; happened to be of the same order as e€p,

equations (51) and (52) would give V¥ =~ O(va'), but there seems to be
insufficient a priori basis to make this guess a formal part of the
analysis.

Inference of Turbulence Properties From Intermittent Signal

Townsend (refs. 10 and 28) has suggested that it may be possible to
compute the statistical properties of the turbulence inside the convex
bulges of the turbulence front from a knowledge of the corresponding
statistical properties of the full intermittent signal plus the inter-
mittency factor y. His hypothesis is that, in effect,

2
aT2 = a7“ (55)
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where a(t) is a random property of the flow and ap is the same
property but confined to the turbulent parts of the total signal. For

2 4 v2 4 W2

example, Townsend refers to as "the mean turbulent inten-

sity within the jets" (identical to bulges).

Actually, the applicability of equation (53) is contingent upon
very definite restrictions. TFor discussion purposes, suppose that
a(t) is the complete signal and b(t) is the intermittent (0 or 1)

signal. Obviously, b= 12 = v, the intermittency factor. Also aT(t)

is a hypothetical signal whose "physical" nature is the same as a(t),
but applies to turbulent fluid only. If amp be chosen to have a mean

value of zero, then it is necessary to introduce & constant quantity A
which is the distance between the zero line of am(t) and the signal

level corresponding to b(t) at zero.

The sketch illustrates the definitions:

Zero line of ap — —

Zero line of whole
signal a ~}P\

oy
A k\!\_

Sketeh (d)

Implicit in this formulation and sketch is the restriction that a
(or amp) is a physical property which is zero in the potential flow

region.

With this representation, the total signal expressed in terms of
the other quantities is

a(t) = v(t)[ag(t) + ] - bag - &7 (5)

since & = 0 by definition and b(aT + A) = bap + Ay.
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Whence, the mean-square value can be written as

ctm— — 2 e
a2 = b2ag® + 2ab2an - (bag) - 2Aybag + 7(1 - 7)A (55)

T —

The objective is to express aT2 as a function of a? and other

necessary parameters. Obviously this is impossible without introducing
some further restrictions,; especially on the statistical relation between
ap(t) and b(t). Therefore, assume

(&) bap =0 (whence bPap = 0, since b = b)
(56)

. 2 2
(v) bzaT = b° X aT2 = 7aT2

A sufficient but not necessary condition for these two is that b(t)
and amp(t) be statistically independent.

With restrictions (56), equation (55) reduces to

82 = yag? + 7(1 - 7)A% (57)

and the turbulence property aT2 can be computed from the corresponding
total-signal property plus measurements of ¥ and A.

For some physical variables a(t) it will turn out that A = 0
and then equation (57) reduces to equation (53).

For the quantity aT2 to have any simple interpretation it must

of course be assumed that the physical variable it represents is a
homogeneous random variable in the turbulent fluid.

Summarizing the conditions necessary for equation (53) to lead to
meaningful results, the following restrictions are necessary:

(1) The physical variable must be zeroc in the potential flow.
(2) The physical variable must be homogeneous in the turbulent flow.

(3) The physical variable (and its square) in the turbulent flow
must be uncorrelated with the location of the front.
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() There must be no "D.C. jump" in the variable between turbulent
and potential flows for the same value of Y.

The first condition immediately eliminates velocity fluctuations
from this sort of treatment. This renders uncertain Townsend's turbu-
lent energy application, mentioned above. However, vorticity fluctuation
and turbulent shear certainly satisfy it, as may temperature or concen-
tration fluctuations and heat or mass transfer, when these are present.

The second requirement is probably not satisfied by any variables
in flows with transport, including of course the commonest example,
shear flow. This follows from the fact that even in spatial zones with
7 = 1 everywhere, there are gradients in all of the quantities which

have been measured. Consequently, the entire concept of aT2 as a func-
tion of position in a shear flow must be semiquantitative at best.

It seems unlikely that the third requirement is satisfied by all of
the physical variables, but for most of them it may be close enough that
equation (57) would be approximately true.

Finally, the occurrence of a "D.C. jump" between potential and tur-
bulent fluid must also depend upon the particular physical variable under
consideration. It certainly does occur for longitudinal velocity at the
boundary of a turbulent shear flow. It certainly does not occur for
z-component velocity in a shear flow which is two-dimensional in the
mean with gradients all in the x~ and y-directions. For many physical
variables its occurrence or absence is not a priori obvious. In any
case it can be handled by resorting to equation (57).

For complex cases, when even equation (57) is believed to be inade-
quate, possibly because the variable is not zero in the potential zone,
it is still possible to obtain statistical information on the signal
structure within the turbulent "bursts'" by laborious computational pro-
cedure for the oscillographiec trace.

A more detailed question may be raised at this point as to the
influence of intermittency upon the measured power spectrum of velocity
fluctuation. Again the answer is certain to be simple if the four con-
ditions listed above are satisfied. In that case, with probe signal
a(t) = ap(t)o(t), the autocorrelation functions of the three variables

are related by
V(1) = Vap(T),(7) (58)

where 71 1is time interval. The power spectra are simply the Fourier
cosine transforms of the correlations and, since the transform of a
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product is equal to the convolution integral of the individual trans-
forms, the three power spectra are related by

Fy(n) = fo P (n1)Fy(n = ny) dng (59)

where Fy(n) can be measured directly from the output of the hot-wire
anemometer; Fp(n) = F,(n) the spectrum of the Schmitt trigger output
in the intermittency measuring circuit (see fig. 28); and FaT(n) is

the spectrum of & hypothetical homogeneous turbulence variable which
should give the nature of the fluctuations within the bulges of the
wrinkled front.

Equation (59) is a Fredholm integral equation of the "first kind,"
readily solved in principle by Fourier integral methods - which corre-
sponds in effect to going back to equation (58).

No attempt has been made to apply this relation because the experi-
mental results appear too uncertain to merit such detailed manipulation.
It is hoped, however, that such a study can be made in later shear-flow
research.

APPLICATIONS TO PARTICULAR TURBULENT FLOWS

Application of the foregoing general concepts and theoretical pre-
dictions on the behavior of the turbulence front to particular turbulent
flows involves two explicit aspects:

(a) Comparison of directly measured o(x) and Y(x) with measured
values of characteristic shear-layer thicknesses, for example,
0(x)(xd*% « B3) in the boundary layer.

(b) Comparison of o(x) and Y(x), as computed from measured tur-
bulence data, with directly measured values of o(x) and Y(x).

The first step is the strictly experimental process of examining a
new aspect of the degree of similarity to be found in the detailed struc-
tures of the various turbulent shear flows.

The second has as its purpose the approximate verification of the
rather crude hypotheses leading to prediction of the turbulence front
behavior, that is, to equations such as (34) and (35).
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Rough-Wall Boundary Iayer

Fitting the experimental results on boundary-layer thickness by a
simple power-law relation (see appendix), it turns out that, neglecting
Reynolds number effects,

numerically
\
5 ~ 0.19(x - x,)°-®% inches
* 0.61
5" =~ 0.13(x - Xg) inches (60=.)
8~ 0.026(x - xo)o'6l
-

The fitting of a power law to a set of points without origin
involves two steps: (1) An origin must be chosen by trial and error to
give the closest approximation to linearity on logarithmic graph paper,
and (2) the "best" straight line must be drawn through the resulting
- plot. This procedure was also applied to the fitting of power-law
“approximations to the experimental data on o(x) and Y(x). Figure 21

illustrates the degree to which a power-law fitting is successful. The
latter quantities are then given by this "direct" measurement as

+
o=~ 0.022(x - x5)° 8791 inches (61)
= +
Y =~ o.1u(x - xo)o.63_o.1 inches (62)
The "best" common origin is x, = -20 inches.

Comparison of equations (61) and (62) with equation (60) shows that,
within the precision of these experimental results, the turbulence front
both progresses laterally and increases in amplitude at the same rate as
the mean boundary-layer flow grows. The uncertainty range indicated is
a crude estimate of standard deviation, not the maximum.



NACA TN 3133 L7

Verification of equation (3&) requires knowledge of both v'/ﬁ
and Ly, (the transversal Iagrangian scale) as functions of x. On the

basis of the v*/f? measurements at corresponding positions across the
boundary layer at four different x-stations (fig. 17), it is assumed for
the sake of this calculation that v' « U;, as dimensional reasoning and
Lauferts pipe measurements (ref. 15) also indicate. The U; 1s obtained

from the measurements of 6(x): Up « x~0:20  por very large x's.

Unfortunately there exist no measurements of lagrangian scale in
turbulent shear flows. However, the ratio of Iagrangian to Eulerian
scale LI/L has been measured as a function of v‘l/v for isotropic

turbulence (ref. 18). These highly scattered measurements show 11/L

to be a slowly decreasing function of v'I/vo In order to estimate

L1(x) for substitution into equation (34) it is assumed that this vari-
ation holds roughly for shear flow. Further, there is good evidence

that for a given shear flow the Eulerian scale is proportional to the
characteristic width of the shear zone, that is, in this case, L « 5

and the constant of proportionality is taken from the smooth-wall boundary
layer of Schubauer and Klebanoff (ref. 4) at a station where dP/dx = 0.
Their data give L = 0.173.

With this estimate of L/, v'L/v in the present boundary
layer goes from about 300 to 500 in the principal test ares:
20 inches < x < 110 inches. But over this range of v'L/v, figure 34
of reference 18 indicates (by extrapolation) little change in Iy/L.

Therefore, for purposes of the present rough estimate, it is assumed
that Ip« L «5. With 5 « x0°61 (eq. (60)) and v' « U; « x=0-20,
the resulting theoretical prediction (eq. (34)) is

o(x) « (x - xo)o'7 (63)

which agrees with the "directly" measured exponent (eq. (61)) perhaps
better than the accuracy of either measurement or theoretical
approximation.

Verification of equation (35) requires information only on &'(x)
at corresponding y-positions in the boundary layer. Since this infor-
mation is not yet directly available, one assumes the isotropic rela-

1
tion, &' =~\5 %T’ where v'(x) has been measured and A(x) can be
1/2

inferred by using the well-known isotropic estimate5 %13 (Z¥£) and
v

5The constant of proportionality is gotten empirically from refer-
ence 29.
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assuming L =~ 0.175 as before. Using the experimental value of &(x)
(eq. (60a)), this calculation gives

VE(x) « (x - x5)7030 T, (64)

Por comparison with experiment this is next translated into Y(x).

Since V¥ is propagation velocity relative to the fluid, one can write
the approximate relation

T _FE) + v

& YW+ V (65)
dx U(Y)

which should hold for any reasonably flat turbulence front. The term v

is the mean fluid velocity in the y-direction. Equation (65) is approxi-

mate because (a) in some flows the front is not very flat and (b) at '

y =Y the mean velocity of the turbulent fluid is somewhat less than
that of the nonturbulent fluid (i.e., Uy).

For the boundary layer, it is well known that

pl

ad

—

8)
™ (66)

i

which is easily shown from the definition of &%(x).

Since experiments show that U(Y) =~ U(5) = U,, one can infer
V(Y) = V(5), so that for the boundary layer, equation (65) gives

g1g
2
s

*
- (67)

Since equation (60a) gives the experimental result

as* -0.39

a;—-z 0.0B(X - X5) (68)

it is clear that the power-law approximation to Y(x) will lie between
0.70 (if the V¥-term dominates in eq. (67)) and 0.61 (if the 8*-term
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dominates). In fact, if the proportionality constant of equation (35)
is determined from the data at x = 102 inches,

V¥ =~ 0.5|ve" (69)
If this is used with equations (67) and (68) to predict

65

¥(x) =~ 0.18(x - xo)o° (70)

the agreement with the directly measured result, equation (62), is good.

It should be remarked parenthetically that, although adequate meas-
surements of ¥(x,y) are still not available on the smooth-wall turbu-
lent boundary layer, an indirect verification of equations (34) and (35)
follows from approximate agreement between the experimental (or ana-
lytically inferred) &(x) and the predicted o(x) and Y(x), using
reasoning like that presented in detail for the rough-wall case.

Two-Dimensional Wake

The measurements of Townsend (ref. 10) in the plane wake far behind
a circular rod provide another case in which equations (34) and (35) can
be checked against experiment.

From conservation of momentum and the assumption of similarity,
dimensional reasoning yields the experimentally verified predictions
that far behind the obstacle a turbulent wake spreads parabolically

(6 « Xl/e) and that the characteristic mean velocity defect decreases
— - -1/2
parabolically ((U°° - Ug) =« x / ) (ref. 30). This means that the plane

wake is a constant Reynolds number shear flow and therefore significantly
simpler than, for example, the boundary layer.

Far behind the wake-producing obstacle, where the fully developed
wake is finally reached, the difference between minimum and maximum
velocity is so small that equation (67) can be approximated by

ay _ v*
o ﬁ; (71)

Since there are only two points in the fully developed x-range, it has
not been possible to determine empirical power laws for &, Y, and o.
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The pertinent experimental result is simply that within the experimental
uncertainty the points in the fully developed range are consistent with
parabolic growth for all three lengths.

1
Verification of equation (34) again requires data on — (x)
U
and LL(x). As can be anticipated for a constant Reynolds number flow,
the root-mean-square turbulent velocities are proportional to the char-
acteristic mean velocity (mean velocity difference in the wake) so that

v o« x-l/z. In this asymptotic state, the mean velocity differences are
U, - U — —
all small ———=L << 1 so that U= Constant = U,. Furthermore, con-
Us

stant Reynolds number implies Iagrangian scale proportional to Fulerian
scale (LL(X) « L(x)), and with the general assumption of L « & it

follows that Ly « x1/2, Equation (34) then gives as prediction for the
variation in wrinkle amplitude of the turbulence front

1/2 (72)

o(x) « x

in agreement with the directly measured result, in the similarity
(large x) zone.

 For the comparison of equation (35) with experiment, no data on &'
are available. As in the boundary layer, it will therefore be assumed

that &'« v'/A. Since v' « x—l/2 and A« xl/z, equation (35) predicts

o M2 (73)
whence

Y« xY/2 (74)

again in agreement with the directly measured result.

Round Jet

. Since fairly detailed turbulence data were already available for
the case of the round turbulent jet (refs. 2 and 31) entering fluid at
rest, intermittency surveys 7(x,r) have been made during the course of
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this investigation to provide further experimental check on the proposed
physical picture of the turbulence front.

From conservation of momentum and the assumption of similarity
dimensional reasoning yields the experimentally verified predictions
that far from its source the round turbulent jet spreads linearly
(r1/2 « x) and that the characteristic mean velocity decreases hyper-

bolically (ﬁb « xcl) (ref. 30). Thus the round jet is another constant
Reynolds number flow and therefore relatively simple.

The new measurements made in the course of this study (fig. 24)
give as power-law approximations with the "best" common origin,

rl/2 « <§ _ 3)l.OOiO..OS (75)
R « (_g _ 5)O.88i0.05 (76)
g e (% _ 5)l.06i0.05 (77)

which may all be taken as linear within the experimental uncertainty.

Previous measurements have shown v'/ﬁ' to be constant and inde-
pendent of x at corresponding radical positions in the jet. Further-
more, the constancy of Reynolds number again permits the inference that
L7, « L. With the assumption that L « rl/e, equation (34) predicts

in reasonable agreement with equation (77).
For the Vg(x) evaluation it is again assumed that §' « v/

With v'« (x - xo)'l and A« L« rl/2 « (x - xg) equation (35) gives

V* o (x - x)" (79)
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and the comparison with experiment can be made by using equation (79)

to predict R(x), merely replacing Y by R in equation (65). Instead
of attempting a detailed proper calculation only a rough estimate was
made by assuming

V(x,R) « U(x,R) « U(x,0)

Then the prediction is

R(x) « (x - %5) (80)

in reasonable agreement with equation (76). In fact, a belief in full
similarity for constant Reynolds number shear flows suggests that equa-
tion (80) may be more nearly correct than equation (76).

Intermittency and Measured Mean Quantities

As pointed out earlier in the section on "Inference of Turbulence
Properties From Intermittent Signal," there seems to be only a restricted
likelihood of extracting from the measured statistical characteristics of
the intermittent signal respectable quantitative results on the statis-
tical properties of the turbulent flow in the convex bulges of the turbu-
lent front. Probably the broadest obstacle to simple physical interpre-
tation of results computed from equation (53) or (57) is the lack of
homogeneity within a fully turbulent zone supporting transfer.

Nevertheless, it seems worth while to present, for some fluctuating
variables which are zero in the potential fluid (i.e., satisfy the first
requirement), the results of applying these two operators.

No detailed quantitative information has yet been obtained on the
value of "D.C. jump" for any physical variable. A rough check from
u(t) oscillograms in the rough-wall boundary layer where 7 = 0.4
indicated that the "D.C. jump" in longitudinal velocity was about 5 to
10 percent of U,.

Unfortunately, this still does not permit calculation of uT2

because all velocity fluctuations violate the first condition, that is,
they are nonzero in the potential flow.

For E-vorticity, which does satisfy this first condition, no
"D.C. jump" is observable on the oscillograms. This is not surprising
since this x-component has no corresponding mean vorticity in this flow



NACA TN 3153 53

field, It may be anticipated that the z-component (¢) will be found

to have a Jjump, if and when it is measured. A plot of ETQ = 52/; is

given in figure 30. To insure y-coordinate consistency, this partic-
ular 7(y) has been measured with the vorticity meter as sensing ele-
ment. It does not differ appreciably from v(y) as determined from
the differentiated signal of a u-meter.

In the outer part of the intermittent zone g2/9 turns out to be

roughly constant, leading to the possible conclusion that §2 is rela-
tively homogeneous in the turbulent fluid.

The Reynolds shear stress -puv has been inferred to be zero in
the potential field outside a turbulence front. Therefore it may also

be interesting to estimate =PUmVipe

Using a representation like equation (54) for u(t) and v(t)
separately and assuming (a) no D.C. jump in v(t), (b) wugpb = vpb = O,

and (c) bEuTvT = bzuTvT, it follows that
— uv

Townsend (ref. 28) has plotted —EZ: versus y without attempting a

%
oy

justification.

Figure 31 shows the result of applying equation (81) to the meas-
ured Reynolds shear stress in the rough-wall boundary layer and in

Townsend's plane wake (ref. 10). The nonconstancy of E?/y can probably
be attributed largely to nonhomogeneity within the turbulent field.

In concluding this section it may be remarked that, if an existing
nonhomogeneity for any variable in the turbulent part of the field
depends only upon distance in from the front, a first-order estimate of
its effect can be made by computing the average value generated at a
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fixed point by random motion of a "fixed" pattern like that sketched
below:

_ _—- Nonzero slope (corresponding to
nonhomogeneity of a in
turbulent fiuid)

—

Rigid pattern fluctuates
randomly like Y(t)

¥y

Sketch (e)
STATISTICAL DESCRIPTION OF TURBULENCE FRONT

The position of the turbulence front Y(x,t) is a random variable
stationary in time and nonstationary in x. The purpose of this section
is to report some further measurements which have been made on its sta-
tistical properties, especially those of Y(t) for a fixed value of x.
Earlier sections have emphasized its statistical variation with x,
particularly through Y(x) and the standard deviation o(x).

It is of course possible for Y to be a multiple-valued function
(see, e.g., fig. 1), but in most flows the occurrence of multiple values
appears to be sufficiently rare that a discussion predicated upon a
single-valued Y 1is applicgble with good accuracy. This is especially
true for the boundary layer, where turbulence levels tend to be sppreci-
ably lower than, for example; in jets entering a still medium. This
conceptual restriction to single-valued Y, exercised throughout the
report, will be justified empirically for the boundary layer by showing
that the average "wavelength" is considerably greater than the average
wrinkle amplitude.
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As a stationary random function Y(t) is susceptible of quanti-
tative statistical description in various ways, not all independent.
Perhaps the two most common mutually independent functional represen-
tations for such variables are the autocorrelation function (or its
Fourier transform, the power spectrum) and the probability density (or
its Fourier transform, the characteristic function). Usually the lower
order moments of the density and spectral functions, which have simple
physical interpretations, are the most easily measured statistical
properties.

The problem of acquiring detailed statistical information on Y(%)
is novel in the sense that nowhere in the experiment is there a signal
which is simply proportional to the stationary variable under study.
Therefore, the conventional statistical functions (above) are not readily
measurable by standard techniques. It is fortuitous that the dissimilar
character of the fields on opposite sides of Y(t) gives such convenient
method of measuring probability density. However, autocorrelation or
power spectrum apparently cannot be directly measured, and therefore
other direct statistical data have been sought, in particular the proba-
bility density of "pulse lengths," actually the statistical measure of
the times between successive occurrences of any particular value of the
primary variable Y(t).

A challenging problem in the theory of stochastic processes is that
of relating (if possible) these densities to the more conventional sta-
tistical measures. Up to the present time, only a few fringe results
seem to have been obtained by workers in the field; these will be men-
tioned in appropriate context.

Probability Density of Y(t)

As has been pointed out in the "Introduction" (eq. (1)), the inter-
mittency factor 7(y) is simply the distribution function of Y(t) and
therefore Oy/dy 1s its probability density.

Calculation of Jy/dy shows that, except in the two "tails" of the
function, it is remarkably symmetrical. Furthermore; the physical
picture given here of front wrinkling as primarily a (lLagrangian) tur-
bulent diffusion phenomenon then suggests a check to see how nearly
dy/dy approximates a Gaussian function, since studies of scalar dif-
fusion in isotropic turbulence have shown a closely Gaussian density.
Figure 32 shows this check. It includes typical plots on Gaussian paper
of y(y) for the boundary layer and for Townsend's wake, as well as
y(r) for the round jet. Clearly all three distributions are Gaussian
within the experimental precision except in the tail regioms.

Deviations from symmetry must of course occur at the tails since
the boundary conditions on the two sides are vastly different.
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Since the nearly Gaussian character of dispersion in isotropic tur-
bulence is still unexplained theoretically, it is not to be expected that
this much more complex phenomenon can be clarified at present. Also, it
must be emphasized that even in the former case it is not necesssrily
true that the probability densities are precisely Gaussian; the current
conclusion is only that a Gaussian curve fits the data as closely as
present experimental techniques produce data. Very likely it is the
deviations (however small) which, when measured, will shed more light
upon the central property of turbulence: +the nonlinearity.

Batchelor (ref. 32) has pointed out that the Gaussian dispersion
pattern observed at very large distances downstream from a contaminant
source in a turbulent flow may be simply a consequence of the "central
limit theorem,"6 since the relative position of a fluid "particle™ a long
time after "tagging" may be regarded as the sum (time integral) of a
large number of small displacements, which are at least uncorrelated for
moderate intervals if not exactly statistically independent. In fact,
if this reasoning does apply, it is doubly effective: particle displece-
ment, the principal variable, is itself the integral of particle velocity,
so that the long-time displacement is the sum of a collection of sums.

Apparently, the central limit theorem has not been extended to inte-
grals of continuous random variables, but some pertinent work has been
done by Kac and Siegert (ref. 33), who showed mathematically that passage
of a particular skew (probability density) random signal through a low
pass filter reduces the skewness. This prediction has been experimentally
verified by Jastram (ref. 34) and by Iribe (ref. 35). A low pass filter
is, of course, qualitatively equivalent to integration.

Probability Density of Pulse lengths

Experimental results.- From a sketch of Y(t) as a stationary
random variable, it is easily seen that the intermittent signal from a
fixed probe provides

iy ¥(t) _

irnann

Sketch (f)

6In effect, this states that the sum of a number of statistically
independent random variables approaches Gaussian charscter as the number
increases without limit (provided thet no finite group "dominates™ the sum).
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a direct means of measuring the statistical distribution of the time
intervals between successive occurrences of any particular value of Y.
From the fluid mechanical point of view this gives a convenient measure
of the "wavelengths” of the mountains and valleys in the turbulence
front. The laminar superlayer is thin enough to be considered a discon-
tinuity in all of this analysis.

If Ty is the duration of the probe in a turbulent zone and T,

the duration in a nonturbulent zone, figure 29 gives the probability
densities Pl(Tl) and p2(T2) at three different values of transversal

position, that is, three different values of the intermittency factor.

By definition (of probability density), the curves in figure 29 are
normalized to unit area. A check on their "accuracy" is given by the
more or less obvious condition,

Tl
— =7 (82)
T, + T,

(v3]

where Ei = JF
0

The terms T, and T, are average "pulse durations" in units of
1 2

o0
Typ1(T1) 4Ty Tp =‘/2 Topo(To) AT,

time, and are functions of y or, alternatively, of 7y since 7y(y) is
monotonic,

The computations from figure 29 give (for & = 3.5 inches):

4
y/5 dichtly El’ sec -T-2’ sec from Tl Zl, in. 12, in,
measured and ﬁ%
0.72 0.75 0.0155 | 0. 0060 0.72 7.0 2.7
0.85 0.50 0. 0106 0.0082 0.56 4.8 3,7
0.98 0.25 0. 0069 0. 0132 0.34 3.1 5.9

where 17 = ﬁ;ﬁl and 1Ip = ﬁ;ﬁe are approximate measures of the
spatial extension of the average intervals in this x vieinity. This
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interpretation of the 1's as average intercept lengths for the random
variable Y(x) gets increasingly accurate as the velocity fluctuation
level decreases. This time-gpace transformation is in fact identical
with that first proposed by Taylor for an isotropic turbulence (ref. 36)
and discussed in more detail by others (refs. 37 and 18).

A comparison between %(ll + 12) for ¥ = 0.50 and the standard

deviation ¢ of Yl(t) at the same x-station gives a rough measure of

the flatness of the wrinkled turbulence front. For this particular sta-
tion in the boundary layer,

20
A 3 (83)

which indicates a rather flat front, as assumed in the earlier theoretieal
discussion on the propagation of the laminar superlayer.

Inspection of figure 29 shows the following traits of the data:
(a) The "points" are rather scattered.

(v) For 7 = 0.50, p; and p, show an appreciable difference.

(¢c) The y =0.25 and 7y = 0.75 cases, which might be expected
to have identical curves with reversed labels, show this character
qualitatively, though not accurately.

Properties (b) and (c) can apparently be attributed chiefly to the

shortness of oscillographic sam,ples;7 therefore the curves in figure 29
have been labeled with the 7's actually given by these short samples,
and the apparent discrepancies (b) and (c) are qualitatively explained.
In other words, a short sample with actual y = y; drawn from an

"infinite" record with vy = 75 can be expected to show other statis-
tical properties resembling those of an "infinite" record with 7y = 7q.

Two other sources of uncertainty in the data of figure 29 are
(1) the natural uncertainty of measurement in the presence of noise,
even with "perfect" equipment, and (2) imperfections in measuring equip-
ment and techniques.

The first of these difficulties affects all intermittency measure-
ments and is basically insurmountable., Of course, the noise level could

TAbout % seconds, as compared with the 2 minutes used in obtaining
the 7's directly.
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be reduced somewhat and, under simplifying statistical assumptions on
both noise and signal, some estimate of the effect could be made.

The second difficulty probably affects Py and Py measurements

more seriously than direct 7y measurements. For example, suppose that
the measuring process misses a sizeable number of the shortest turbu-
lent "bursts." This fault will scarcely affect the directly measured 7y
since these contain only a small part of the total number of pulses to
be counted (except for ¥ << 1). On the other hand, this fault will not
only change the character of Pl(Tl) for small T;'s but also will

change the level of PE(TQ) for large T,'s, since the very short tur-
bulent bursts subdivide long potential "bursts" into shorter ones. Hence,
this fault will seriously affect T, and therefore y as computed from
Tl and Eb. Precisely this fault is observable on the oscillographic
traces.

Other defects similarly observed are the (relatively infrequent)
missing of short potential "bursts" and the occasional overhang of the
trigger signal beyond the duration of a turbulent burst. The last of
these faults affects the direct 7 measurement as well.

An obvious way around some of these difficulties is the direct use
of &(t) or %% (t) oscillograms to compute p, and p,. To some

extent this was done, and the extreme tediousness of this method is
exactly why the samples processed are so short.

This inadequate sample length (fault (3)) most seriously affects
the results in the large T; and T, ranges. The relative seriousness

of this limitation for long versus short pulses is not given (as might
be guessed at first blush) by the ratio of sample length to pulse length,
but by the ratio of sample length to the inverse of the frequency of
occurrence of the particular length of pulse (actually a small range)

in question. For example, in a 3-second oscillographic sample, the
points on the tails of Py and P, may represent as few as one or two

actual occurrences. With this in min@_it can be concluded that the
agreement between 7's obtained via T; and T, and 7's directly

measured is surprisingly good.

It would be interesting to know whether Py and P, approximate

exponential distributions for large values of T; and T,. However,

the uncertainty of the points in just this range is so great as to render
such a quantitative question unanswerable. Some very indirect evidence
via the power spectrum of the Schmitt trigger output for y = 0.50 will
be discussed in a following section.
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Since the small Ty and T, ranges of py and p, are quite

uncertain (i.e., for bursts shorter than 2 milliseconds), some quali-
tative analytical consideration of the anticipated behavior in this
range is in order. These short segments arise whenever the hot-wire
passes just below a local maximum (for turbulent fluid) or just above
a local minimum (for potential fluid) in Y(t).

The variable Y(t) must be differentiable (since it occurs in a
continuum); therefore its extremes have horizontal tangents. Thus, a
Taylor series expansion of Y(t) about any local extreme t = tp starts

with a term proportional to (t - tm)e. The limiting behavior of p;

and ©p can thus be obtained by considering a parabola, C = D2 as in
the following sketch:

Sketch (g)

The problem is then as follows: Suppose C has a flat probsbility
density pC(C);8 what is the probability demsity p, of D = Jee

In general, if C = C(D) is unique,

pp(D) = pu(C) % (84 )

8The very small range to be studied, that is, just the immediate
vieinity of an extreme, permits approximating any small segment of a
finite probability density by a constant value.
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whence, for this particular problem

py (D) ~ D (85)

It follows from this calculation that the probability density of
the intervals between successive occurrences of any particular value of
a differentiable random variable must start out (a) from the origin and

(b) linearly. Specifically, pl(Tl) and p2(T2) must behave in this

fashion, even though the measured curves do not all show this tendency
in the range covered.

By reasoning similar to the above it is obvious that for a con-
tinuous but nondifferentiable variable (corresponding to pointed but
uncusped extremes) the corresponding density starts out at a finite
value.

Status of random-variable theory.- The mathematical problem of
relating the probability density of the intervals between successive
occurrences of any particular value of a continuous random variable to
the ordinarily more accessible statistical functions (probability density
of the primary variable, power spectrum, etc.) has apparently not been
solved, even for a Gaussian variable.

Rice (ref. 38) has deduced the probability of a zero of a Gaussian
variable I(t) in an interval (t1 + t5), (ty + to + dt) when there

is a zero at tj;. However, the probability density of intervals between

successive zeros (or successlive occurrences of any other particular
value ) does not appear to follow easily from Rice's result. Of course,
in the particular case when successive intervals are statistically inde-
pendent, the occurrence numbers have a Poisson density, and the interval
lengths have a simple exponential probability density.

A more directly applicable result, apparently due to Rice
(ref. 38), relates the expected rate of. occurrence of any particular
value of a Gaussian variable I(t) to the probability density of the
variable and the autocorrelation function behavior in the vicinity of
zZero:

(86)
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where V¥(7) is the nonnormalized autocorrelation function I(t)I(t + T),
and a prime indicates differentiation. The proof of equation (86)
requires also that I(t) and I'(t) be uncorrelated - which is auto-
matically satisfied for a stationary variable,

However, it must be emphasized that the pristine simplicity of this
theorem is dependent upon the restriction to a Gaussian variable. Two
of the seemingly inexhaustible number of fortuitous properties of the
Gaussian probability density are:

(a) If a variable is Gaussian, so is its derivative.

(b) If two Gaussian variables are uncorrelated, it follows that
they are statistically independent.

Without these built-in conveniences, it seems likely that such a
theorem could be deduced only with the general assumptions that the
variable and its derivative are statistically independent.

For the expected rate of zeros, equation (86) reduces to (ref. 38)

/2
g - 1| ¥ / (87)
" x| (o)

Equation (87) has been used by lLiepmann, Laufer, and Liepmann (ref. 39)
to measure the microscale in & decaying isotropic turbulence. It will
be used here to obtain ¥"(0) for the turbulence front Y(t).

Measurements have also been made of the average rate of occurrence
of the values of Y(t) corresponding to y = 0.25 and 0.75 in the
intermittent zone of the rough-wall boundary layer. In figure 33, the
y - Y

g
location of the three experimental points has been chosen according to
the value of 7 of the short samples (from which the N's were meas-
ured; see the preceding table) rather than the true physical locations
of the probe. The agreement is better than can be expected with the
uncertainty of the measurements and therefore fortuitous. The number
given for the rate of occurrence of zeros, Ng = 108 per second, is

interpolated along the Gaussian curve.

three experimental points are compared with equation (86). The

Measurements of the probability density of zeros in the fluctuating
part of the signal from a human voice have been reported by Davenport
(ref. 40).
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Power Spectrum of Schmitt Trigger Output

As indicated in figure 6, the output of the Schmitt trigger is in
principle a random flat-top signal which is on whenever the probe is in
turbulent fluid and off whenever it is ;in potential flow. Obviously the
statistical properties of this signal must have some relation to those
of the primary variable Y(t), and therefore two convenient properties
have been measured. The first is the probability density of pulse
lengths, tops and bottoms separately; these are of course just pl(Tl)

and p.(T,) (fig. 29). The second is the power spectrum of the trigger
o 2

output, measured at the same locations as the densities (fig. 28).

The three spectra have the same general shape, with power-law
decrease for high frequency as indicated in the figure.

It might be expected that a relation should exist between the pulse-
length densities of any flat-top signal and its power spectrum, but a
search of the literature has uncovered no such analytical results except
in special cases, one of which is used below.,

The simplest of the three signals is that corresponding to 7y = 0.50,
and in figure 28 this power spectrum is seen to agree closely with that
for a "Poisson type" flat-top signal (see, e.g., ref. 38):

M

F(n) [
M2 + 312112

(88)

where M 1is the average number of jumps per second and n is cyclic
frequency. For this application and y = 0.50, M # Np, the average num-

ber of zeros per second in Y - Y, since the distribution of zeros cannot
be truly Poisson.

The very good agreement in figure 28 implies only that in this case
pl(Tl) and p2(T2) could be exponential away from the origin, even
though the directly measured data are too uncertain to permit any esti-

mates. However, no assertion can be made, since the -2 power spectral
decrease is characteristic of most signals with "discontinuities."

Autocorrelation Function of Y(t)
The approximately Gaussian character of Y - ¥ permits application

of equation (87) relating the zero occurrence rate and the autocorrelation.
For this purpose the nonnormalized autocorrelation is defined by

V()= Yy (t)yy(t + 7) (89)
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where Y, =Y - Y. Obviously ¥(0) = 02 and since Ny and o are
the measured quantities, equation (87) is written

¥'(0) = -n20®N 2 (90)
where
Ng = zr—gf:— zeros per second (90a.)
Ty + Tp

For the rough-wall turbulent boundary layer at x = 102 inches,
g = 0,55 inch and NO = 108 zeros per second, so

v'(0) = 3.4 x lOu square inches per second® (91)

A corresponding characteristic length mathematically equivalent to the
dissipative scale ("microscale") in turbulence can be deduced by the
time-space transformation mentioned earlier:

1/2 _
— {2¥(0 2Ux
Ny = __14;(__2 = \l__._._ (92)
©[¥"(0) nlNg
For this particular case,
M = 1.9 inches (93)

which is a bit smaller than 17 and 17, in the preceding table for
vy = 0.50.

1
For low turbulence levels, one might expect the quantity E: Ny
U

mbedtmonofmeM@mgmsmﬁﬂmmmmﬂeKn=MW

(ref. 18), which is roughly equal to the Eulerian microscale A over a
wide range of R, in isotropic turbulence (ref. 18). 1In this case,

<¥; AY> =~ 0.09 inch, This is the same order as A 1in the neighboring
8)
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turbulence. Since R, for this turbulence 1is roughly 70, which (in
isotropic turbulence) gives Kn ~ 1.5\, the conclusion here is that

v
—_ Ay = V'A (9%4)
T Y t

or, since U=~ U,, the Iagrangian time microscale of the neighboring
turbulence is given roughly by

<2
M~ g (95)-

Equation (90) gives only the vertex curvature of the autocorre-
lation function. Because of the Gaussian character of Y(t), it is
possible to estimate the entire V(7) from the spectrum of the trigger
output. It has been shown by North (see ref. 41) that the autocorre-
lation function of a "strongly clipped" Gaussian variable is simply
related to the autocorrelation function of the variable itself':

\Vc(T) 2 . =1 \lf(T)
= Z gi 6
o) * T Y0) (56)

A stongly clipped variable is just a flat-top signal which changes
sign whenever the primary variable passes through zero - which exactly
describes the relation between the trigger output and the primary vari-
able Y(t).

Since, as shown by Wiener (ref. 42), the autocorrelation function
of a stationary random variable is Jjust the Fourier cosine transform of
its power spectrum (and vice versa),

¥ (T) =k/;w Fo(n) cos 2xnT dn (97)

Fe(n)

it

hu/\ Vo (1) cos 2mnnt dr
0

the autocorrelation of the trigger output is computed from the meas-
ured power spectrum. The good agreement of Fo(n) with the form in

Ay
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equation (88) permits using a simple exponential for WC(T) (ref. 38):

\VC(T) ~ e_gMT (98)
v.(0)

Then, equation (94) gives the autocorrelation function of the tur-

bulence front location:
¥ | gin [% e‘2wf] (99)
¥(0) 2

which is plotted in figure 34. The vertex osculating parabola corre-
sponding to V¥"(0) as given by equation (87) and the directly measured
zero occurrence rate are drawn in for comparison. The former parabola
should give the origin behavior of V¥(v) more accurately than equa-

tion (99).

As should be expected, the calculation of ¥"(0) for equation (99)
gives

y"(0)
¥(0)

= -MP (100)

identical with equation (87), if M —> Nj.

In fact, it is found experimentally that M = 2Ny for this inves-
tigation. This is not surprising since the differentisbility of Y;(t),

whose zeros give the square-wave Jumps, leads to a considerable deficit
of short "pulses" as compared with a "truly Poisson” square wave (see
the section "Experimental results" under "Probabllity Density of Pulse
Iengths").

Of course the power spectrum of Yl(t) could be calculated by

taking the Fourier cosine transform of V¥(7), but the data are suffi-
ciently inaccurate that further manipulation scarcely seems worth while.

Other characteristic lengths of the wrinkled turbulence front can
be estimated from the integral of V¥(7), mathematically analogous to the
"integral" scale of turbulence, but these may be less pertinent than,
for example, 1; and 1y, the average "pulse" lengths:
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()

1 ® 1 n/2 sin p _ S

whence,
U [°
-_—1/p Y(7) dr = 7.4 inches
v(0)Jg

which turns out to be the same order as 1 and 1o,

Alternatively,

v L/h V(1) dTr = 0.35 inch
¥(0)Yo

both values being for the rough-wall boundary layer at x = 102 inches.
CONCLUDING DISCUSSION

From the analytical and experimental results reported here on the
problem of the relatively sharp instantaneous front separating turbulent
fluid from nonturbulent fluid, (as at a free-stream boundary) the fol-
lowing new conclusions are drawn:

1. The nonturbulent region is a field of irrotational fluctuations.

2. The "front" separating turbulent from potential flow is actually
a very thin fluid layer in which viscous forces are of primary importance.
The role of this "laminar superlayer" is the propagation of vorticity
(both mean and fluctuating) into the potential field. It is maintained
thin by propagation relative to the fluid and by the random stretching
of vortex lines in its local vorticity gradient.

3. The common occurrence of contiguous rotational and irrotational
velocity fluctuation fields underscores the usefulness of confining the
word "turbulent" to random rotational fields only.

4. The rate of increase of wrinkle amplitude of the turbulence front
can be roughly predicted in terms of a lagrangian diffusion analysis,
using the statistical properties of the turbulence in the fully turbu.-
lent zone. The actual estimate is given by equation (34).
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5. By dimensional reasoning and, independently, through a model
of the laminar superlayer, the thickness of the superlayer can be esti-
mated. The simplest approximation is equation (51), giving a thickness
of the same order as the Kolmogoroff (minimum) turbulence length.

6. The propagation velocity §¥ of the turbulence front is taken

by dimensional reasoning to be proportional to va'a This is roughly
verified by experiment.

7. The downstream rate of growth of the turbulence front, as meas-
ured by standard deviation o(x) and transversal position Y(x) is
found to be proportional to the shear-zone thickness, within the experi-
mental precision, for plane wake, round jet, and rough-wall boundary
layer. This is shown independently by direct experiment and by appli-
cation of the results outlined in the previous paragraphs.

8. The probability density of the turbulence front location at any
fixed downstream station is Gaussian within the precision of the meas-~
urements everywhere except at the tails. This is found experimentally
for all three types of turbulent shear flow studied.

9. The probability density of the "pulse lengths" in the intermit-
tent signal deviates strongly from simple exponential type, presumably
because Y(t) is differentiable.

10. The autocorrelation function of Yj(t) for the boundary layer
is found very indirectly from experiment to be as shown in figure 34,

It seems likely that the presence of the turbulence front with its
attendant detailed statistical properties will have to be included in
basic research on turbulent shear flows with free-stream boundaries. It
is not quite so clear that it must be explicitly included in semiempirical
engineering estimates concerned only with over-all transfer; so far no
case has been encountered in which the front grows at a rate distinctly
different from the gross shear-layer growth.

It appears that at present, this new physical picture introduces at
least as many new questions as it gives explanations of older observa-
tions. Insofar as it is concerned with a boundary condition, it tells
nothing about transport phenomena within a turbulent region. Yet, since
the wrinkle amplitude o(x) and transversal travel Y(x) of the tur-
bulence front appear to be "governed by" (or "related to") properties of
the contiguous turbulence, any gross assumption on these variables implies
consequent relations among the turbulence properties.

It should especially be pointed out that the present investigation
does not appear to shed any light on the characteristic difference between
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transport rates of vector (momentum) and scalar (heat, mass) properties.
In fact, since it is concluded that no mean momentum can be transported
beyond the turbulence front it appears that (for laminar Prandtl and
Schmidt numbers not very much smaller than unity) the front should apply
equally well to heat or chemical composition. Oscillographic observa-
tions (not mentioned in the body of the report) in a hot jet show a
temperature fluctuation intermittency, presumably coincident with the
vorticity intermittency. If this inference is true, then the vector
versus scalar transport rate difference will have to be explained in
terms of properties of the entirely turbulent region.

Interesting speculations in this direction have been made by
Townsend (ref. 10), who suggests that momentum is largely transported
by relatively high wave number fluctuations while heat is transported
by both low and high wave number fluctuations, that is, by "jet con-
vection" and by "gradient diffusion,” respectively. However, there are
two dubious minor postulates in his snalysis (mentioned here in the
gsection "Inference of Turbulence Properties From Intermittent Signal"
and at the end of the section "Iaminar Superlayer") and also he has not
clarified the principal assumption vis-&-vis the known fact that the
shear correlation uv appears to get ever-increasing contributions
toward the low wave numbers (ref. 43%). Finally, his inference that the
lateral "jets" (bulges) convect little longitudinal momentum appears to
be in contradiction to the fact that the intermittent velocity signal
shows an appreciably lower mean in the turbulent segments than in the
potential ones, as seen in figures 9 and 15,

The Johns Hopkins University,
Baltimore, Md., January 20, 1953.
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APPENDTIX
GROWTH OF ROUGH-WALL BOUNDARY LAYER

Although the growth of turbulent boundary layers with zero static-
pressure gradient is better approximated by a logarithmic function
(ref. 11), the exploratory purposes of this investigation are satisfied
by the simpler and less accurate power-law treatment.

The momentum integral relation for turbulent boundary layer with
zero static-pressure gradient can be written approximately as (ref. 11)

2 (a1)

The following rough assumptions are made:

(a) Simple geometrical similarity in mean velocity profiles:

-_EJ—. = fn(Z)
U, 5
(b) "Fully rough" wall conditions:

H:;E; 100

therefore

To & p[l__l(.hi' °

where h 1is effective roughness height
(c) Power-law velocity profile:

—_ m
U - (
Uy

:)
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From assumptions (a) and (c)
h m
() o)

whence the second assumption gives

al
N

.

2m
—2
Ty = pUq (%> (a3)

Since 6 « B, substitution of equation (A3) into equation (Al) gives

ae  gmem (A4)
dx
for h = Constant.
Therefore
e
6« (x - x)°"t (85)

Equation (A5), a simple power law, permits approximation to the
actual boundary-layer growth with accuracy adequate for the present
investigation.

In fact, since both m and the exponent in equation (A3) have been
measured independently, there is opportunity for an experimental check
on the accuracy of the present crude approach: mean velocity profiles
(fig. 11) give m = 1/3.5, Therefore the analysis predicts

0.6k
0 « (x - xo)

whereas measurements of boundary-layer growth (fig. 12) give

0.63+0. 1
Bx (X - Xp)

It should be pointed out that boundary layers in general cannot
have simple geometrical similarity because their characteristic Reynolds
numbers increase with Xx.

This particular "rough-wall" boundary layer is "fully rough" all
the way downstream (from x = 0 to x = 102, Urh/v falls from 200

to 145), if the peak-to-peak height of the corrugation is interpreted
as h,
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Figure 1.- Turbulent wake of bullet. (Courtesy of Ballistic Research
Laboratories, Aberdeen Proving Ground.)
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Figure 2.- Schematic diagram of wind tunnel.
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Figure 4.- Schematic diagram of round-jet equipment.
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Figure 5.~ Over-all block diagram of intermittency measuring arrangement.
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Figure 6.- Detailed block diagram of intermittency measuring device.
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Figure 9.- Oscillograms of hot-wire signal and trigger output.
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Figure 10.- Vorticity meter.
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Figure 21.- Amplitude and average position of turbulence-front in boundary
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Figure 22.- Typical intermittency distribution across round jet.
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Jet as functions of x/2r,.
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Figure 26.- Intermittency distributions for several x-stations in plane
wake. (Data from ref. 10.)
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wake as functions of x. (Data from ref. 10.)
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Figure 28.- Power spectra of Schmitt trigger outputs for three different
intermittencies in boundary layer at x = 102 inches.
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Figure 29.- Probability densities of segment lengths of intermittent
signal for three different intermittencies in boundary layer at

X = 102 inches.
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Figure 31.~- Distributions of Reynolds shear stress divided by intermittency.
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Figure 32.- Typical intermittency distributions, for boundary layer, jet, &
and wake, plotted on Gaussian probability scale.
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Figure 33.- Frequency of occurrence of zero and two other particular values
of Yl(t) in boundary layer at x = 102 inches. Solid curve is that of

a strictly Gaussian variable.
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Figure 34.- Autocorrelation function of turbulence front location as a
function of time in dboundary layer at x = 102 inches.
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